精英家教网 > 高中数学 > 题目详情
已知直线:
sinθ
a
x+
cosθ
b
y=1(a,b为给定的正常数,θ为参数,θ∈[0,2π))构成的集合为S,给出下列命题:
①当θ=
π
4
时,S中直线的斜率为
b
a

②S中的所有直线可覆盖整个坐标平面.
③当a=b时,存在某个定点,该定点到S中的所有直线的距离均相等;
④当a>b时,S中的两条平行直线间的距离的最小值为2b;
其中正确的是
 
(写出所有正确命题的编号).
考点:直线的截距式方程
专题:直线与圆
分析:①当θ=
π
4
时,S中直线的斜率为k=-
b
a
;②(0,0)不满足方程,所以S中的所有直线不可覆盖整个平面;③当a=b时,方程为xsinθ+ycosθ=a,存在定点(0,0),该定点到S中的所有直线的距离均相等;④当a>b时,S中的两条平行直线间的距离最小值为2b.
解答: 解:①当θ=
π
4
时,S中直线的斜率为k=-
sin
π
4
a
cos
π
4
b
=-
b
a
,故①错误;
②(0,0)不满足方程,所以S中的所有直线不可覆盖整个平面,故②错误;
③当a=b时,方程为xsinθ+ycosθ=a,存在定点(0,0),该定点到S中的所有直线的距离均相等,故③正确;
④当a>b时,S中的两条平行直线间的距离为d=
2
sin2θ
a2
+
cos2θ
b2
≥2b,即最小值为2b,故④正确.
故答案为:③④.
点评:本题考查直线系方程的应用,要明确直线系中直线的性质,结合三角函数的性质,判断各个命题的正确性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={(x,y)|(x-1)2+y2≤25},B={(x,y)|(x+1)2+y2≤25},C={(x,y)||x|≤t,|y|≤t,t>0},当C⊆(A∩B)时,t的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=i(1-i)(其中i为虚数单位),则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.若对于任意的m∈N*,am,a2m,a4m成等比数列,则k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1+x)6的展开式中x2的系数为
 
(用数字表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x+x-4,则函数f(x)的零点位于区间(  )
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2cos2ωx的最小正周期为π,则f(
π
4
)的值等于(  )
A、2
B、1+
2
2
C、1
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

对于各项均为整数的数列{an},如果ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”,如果数列{an}不具有“P性质”,只要存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”,下面三个数列:①数列1,2,3,4,5;②数列1,2,3,…,11,12;③数列{an}的前n项和为Sn=
n
3
(n2-1).其中具有“P性质”或“变换P性质”的有(  )
A、③B、①③C、①②D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x+2y-4≥0
x-y-4≤0
y≤a
所表示的平面区域的面积等于6,则a的值为(  )
A、1
B、
2
C、2
D、3

查看答案和解析>>

同步练习册答案