精英家教网 > 高中数学 > 题目详情
设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.若对于任意的m∈N*,am,a2m,a4m成等比数列,则k的值为
 
考点:等比数列的性质
专题:等差数列与等比数列
分析:先通过求a1=S1求得a1,进而根据当n≥2时an=Sn-Sn-1求出an,验证可得an,(2)根据am,a2m,a4m成等比数列,可知a2m2=ama4m,根据数列{an}的通项公式,代入化简即可.
解答: 解:(1)由题意当n=1,a1=S1=k+1,
当n≥2,an=Sn-Sn-1=kn2+n-[k(n-1)2+(n-1)]=2kn-k+1(*).
经检验,n=1时(*)式成立,
∴an=2kn-k+1.
(2)∵am,a2m,a4m成等比数列,
∴a2m2=ama4m
即(4km-k+1)2=(2km-k+1)(8km-k+1),
整理得:mk(k-1)=0,对任意的m∈N*成立,
∴k=0或k=1.
故答案为:k=0或k=1.
点评:本题考查数列等比关系的确定和求数列通项公式,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,椭圆的离心率为
1
2
,连接椭圆的四个顶点得到的菱形面积为4
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点F2作斜率为K的直线L与椭圆C交M、N两点,在y轴上是否存在点P(0,m)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某地区高三学生的身体发育情况,抽查了该地区100名高三男生的体重.根据抽样测量后的男生体重(单位:kg)数据绘制的频率分布直方图如图所示,则这100名学生中体重值在区间[56.5,64.5)的人数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂甲、乙、丙三个车间生产同一产品,数量分别为120件,90件,60件.为了解它们的产品质量是否有显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了4件,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为二次函数,且f(-1)=2,f′(0)=0,
1
0
f(x)dx=-2
(1)求f(x)的解析式
(2)求f(x)在[-1,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx+2k与圆x2+y2+mx+4=0至少有一个交点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线:
sinθ
a
x+
cosθ
b
y=1(a,b为给定的正常数,θ为参数,θ∈[0,2π))构成的集合为S,给出下列命题:
①当θ=
π
4
时,S中直线的斜率为
b
a

②S中的所有直线可覆盖整个坐标平面.
③当a=b时,存在某个定点,该定点到S中的所有直线的距离均相等;
④当a>b时,S中的两条平行直线间的距离的最小值为2b;
其中正确的是
 
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+ky-2k=0与l2:kx-(k-2)y+1=0垂直,则k的值是(  )
A、1B、3C、1或-2D、0或3

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是不等式组
x≥0,  y≥0
x-y≥-1
x+y≤3
表示的平面区域内的任意一点,向量
m
=(1,1),
n
=(2,1),若
OP
m
n
(λ,μ为实数),则λ-μ的最大值为(  )
A、4B、3C、-1D、-2

查看答案和解析>>

同步练习册答案