精英家教网 > 高中数学 > 题目详情
已知以椭圆的右焦点F为圆心,为半径的圆与直线:(其中)交于不同的两点,则该椭圆的离心率的取值范围是(    )
A.B.C.D.
A
本题考查椭圆的离心率,直线与圆的位置关系,不等式.
椭圆右焦点到直线的距离为若以椭圆右焦点为圆心,为半径的圆与直线:(其中)交于不同的两点,则,整理的,即为椭圆离心率)解得故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆的右焦点与抛物线的焦点重合,则
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于两点,为右焦点,若为等边三角形,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆过点,且点轴上的射影恰为椭圆的一个焦点
(Ⅰ)求椭圆的方程;
(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,其长轴长是短轴长的2倍,右准线方程为x =
(1)求该椭圆方程,
(2)如过点(0,m),且倾斜角为的直线L与椭圆交于A、B两点,当△AOB(O为原点)面积最大时,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆的焦点为顶点,离心率为的双曲线方程(    )
A.B.
C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若焦点在轴上的椭圆的离心率为,则m="            "

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的中心为顶点,左准线为准线的抛物线方程是              .

查看答案和解析>>

同步练习册答案