精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且曲线在点处的切线与轴垂直.

(I)求函数的单调区间;

(Ⅱ)若对任意(其中为自然对数的底数),都有恒成立,求的取值范围.

【答案】(Ⅰ)单调减区间为,单调增区间为.

(Ⅱ) .

【解析】试题分析:

(Ⅰ)由导数的几何意义及条件可得,解得.然后由导函数大于(小于)零可得函数的单调区间.(Ⅱ)由(Ⅰ)可得,令 ,结合导数可得时,单调递减,故.由,可得.然后再验证当时,成立即可.本题也可分为两种情况分别求出的取值范围,然后取其并集即可.

试题解析

(Ⅰ)的定义域为

,定义域为

由题意知,解得,

,解得;由,解得

的单调减区间为,单调增区间为.

(Ⅱ)由(Ⅰ)知

法一:设,则

,则

时,,故上单调递减,

时,单调递减,

时,

由题意知,又

.

下面证明当时,成立,

即证成立,

,则

,得是增函数,

时,

成立,即成立,

故正数的取值范围是.

法二:①当时,可化为

,则问题转化为证明对任意恒成立.

,得,令,得

∴函数上单调递增,在上单调递减.

时,下面验证.

,则.

所以上单调递减,

所以.即.

故此时不满足对任意恒成立;

时,函数上单调递增.

对任意恒成立,

符合题意.

综合,.

②当时,,则问题转化为证明对任意恒成立.

;令,得

∴函数上单调递增,在上单调递减.

时,上是增函数,所以

时,上单调递增,在上单调递减,

所以只需,即

时,上单调递减,则需.

因为不符合题意.

综合可得.

由①②得正数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点在直线上,动点Q在直线上,记线段的中点为

,且,则的取值范围为 ________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:

(1)根据表中周一到周五的数据,求y关于x的线性回归方程。

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

注:回归方程中斜率和截距最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题说法中正确的是

A. 对于实数,“”是的充分不必要条件

B. 已知都是整数,则命题“若,则不都是奇数”是假命题

C. “若,则关于的方程有实根”的逆否命题为假命题

D. 命题“全等三角形的面积相等”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:

使用年限

2

3

4

5

6

维修费用

2.2

3.8

5.5

6.5

7.0

(1)画出散点图;

(2)求关于的线性回归方程;

(3)估计使用年限为10年时所支出的年平均维修费用是多少?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

表1:甲套设备的样本频数分布表

(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?

(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:

甲套设备

乙套设备

合计

合格品

不合格品

合计

(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

表1:甲套设备的样本频数分布表

(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?

(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:

甲套设备

乙套设备

合计

合格品

不合格品

合计

(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案