精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求f(x)表达式.

分析 先求导函数,再利用函数f(x)=ax3+bx2+cx在x=1和x=-1处有极值,且f(1)=-1,可得方程组,从而可求a,b,c的值.

解答 解:由题可知f′(x)=3ax2+2bx+c,
∵f(x)在x=1和x=-1处有极值,且f(1)=-1,
∴$\left\{\begin{array}{l}{f′(-1)=0}\\{f′(1)=0}\\{f(1)=-1}\end{array}\right.$,∴$\left\{\begin{array}{l}{3a-2b+c=0}\\{3a+2b+c=0}\\{a+b+c=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=0}\\{c=-\frac{3}{2}}\end{array}\right.$,
∴f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$.

点评 本题以函数为载体,考查导数的运用,考查函数的极值,解题的关键是正确运用极值条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{1}{3}$x3-3x2+2015在区间[$\frac{1}{2},3$]上的最小值为1997.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx+$\frac{m}{x}$+1,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的最小值;
(Ⅱ)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a}{x}$+$\frac{a}{{x}^{2}}$(a∈R).
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)在[1,+∞)上存在单调减区间,求实数a的取值范围;
(3)在(1)的条件下,证明:$\frac{1-{x}^{2}-({x}^{2}+x)(f(x)+\frac{1}{x}-\frac{1}{{x}^{2}})}{{e}^{x}}$<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(n)=(1+$\frac{1}{n}$)n-n,其中n为正整数.
(1)求f(1)、f(2)、f(3)的值;
(2)猜想满足不等式f(n)<0的正整数n的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一个盒子里放有6张卡片,上面标有数字1,2,3,4,5,6,现在从盒子里每次任意取出一张卡片,取两张.
(1)若每次取出后不再放回,求取到的两张卡片上数字之积大于12的概率;
(2)在每次取出后再放回和每次取出后不再放回这两种取法中,得到的两张卡片上的最大数字的期望值是否相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知下列条件,解三角形(角度精确到1°,边长精确到1cm):
(1)b=26cm,c=15cm,C=23°;
(2)a=15cm,b=10cm,A=60°;
(3)b=40cm,c=20cm,C=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知在数列{an}中,首项a1=3,且有2(an+1-an)=an+1•an,则数列{an}的通项公式为an=$\frac{6}{-3n+5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(a+1)x+3(x∈R,a∈R).
(1)若a=1,写出函数f(x)单调区间;
(2)设函数g(x)=log2x,且x∈[$\frac{1}{2}$,4],若不等式f(g(x))≥$\frac{a+3}{2}$恒成立,求a的取值范围;
(3)已知对任意的x∈(0,+∞)都有lnx≤x-1成立,试利用这个条件证明:当a∈[-2,$\frac{9}{4}$]时,不等式f(x)>ln(x-1)2恒成立.

查看答案和解析>>

同步练习册答案