【题目】下列结论正确的是( ).
A.“,互为共轭复数”是“”的充分不必要条件
B.如图,在复平面内,若复数,对应的向量分别是,,则复数对应的点的坐标为
C.若函数恰在上单调递减,则实数的值为4
D.函数在点处的切线方程为
【答案】ABD
【解析】
利用充分条件和必要条件,即可判断A的正误;因为复数对应的坐标即为的坐标,根据图形求出,坐标,即可判断B的正误;由函数恰在上单调递减,可得是的两根,利用根与系数的关系,即可求出并判断C的正误;求出在点处的切线方程,即可判断D的正误.
对A,设,则,所以,故充分性成立;
当,,此时,但,不互为共轭复数,故必要性不成立.
所以“,互为共轭复数”是“”的充分不必要条件.
故 A正确.
对B,由图可知,,所以,
故复数对应的坐标为.
故B正确.
对C,,因为函数恰在上单调递减,
所以的解集恰好是,故是方程的两根,
所以.
故C错误.
对D,因为函数,所以,
所以在处切线斜率,
故切线方程为,即,
故D正确.
故选:ABD.
科目:高中数学 来源: 题型:
【题目】双曲线:的左右顶点分别为,,动直线垂直的实轴,且交于不同的两点,直线与直线的交点为.
(1)求点的轨迹的方程;
(2)过点作的两条互相垂直的弦,,证明:过两弦,中点的直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为选拔,两名选手参加某项比赛,在选拔测试期间,测试成绩大于或等于80分评价为“优秀”等级,他们参加选拔的5次测试成绩(满分100分)记录如下:
(1)从的成绩中各随机抽取一个,求选手测试成绩为“优秀”的概率;
(2)从、两人测试成绩为“优秀”的成绩中各随机抽取一个,求的成绩比低的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:
包裹重量(单位: ) | |||||
包裹件数 |
公司对近天,每天揽件数量统计如下表:
包裹件数范围 | |||||
包裹件数 (近似处理) | |||||
天数 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来天内恰有天揽件数在之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】鲤鱼是中国五千年文化传承的载体之一,它既是拼搏进取、敢于突破自我、敢于冒险奋进精神的载体,又是富裕、吉庆、幸运的美好象征.某水产养殖研究所为发扬传统文化,准备进行“中国红鯉”和“中华彩鲤”杂交育种实验.研究所对200尾中国红鲤和160尾中华彩鲤幼苗进行2个月培育后,将根据体长分别选择生长快的10尾中国红鲤和8尾中华彩鲤作为种鱼进一步培育.为了解培育2个月后全体幼鱼的体长情况,按照品种进行分层抽样,其中共抽取40尾中国红鲤的体长数据(单位:)如下:
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根据以上样本数据推断,若某尾中国红鲤的体长为,它能否被选为种鱼?说明理由;
(2)通过计算得到中国红鲤样本数据平均值为,中华彩鲤样本数据平均值为,求所有样本数据的平均值;
(3)如果将8尾中华彩鲤种鱼随机两两组合,求体长最长的2尾组合到一起的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形中,分别为的中点 为中点,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中.
(1)证明:;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线与抛物线交于,两点,且.
(1)求的方程;
(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4.
(1)求抛物线的方程;
(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0),其右焦点为F(1,0),离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F作倾斜角为α的直线l,与椭圆C交于P,Q两点.
(ⅰ)当时,求△OPQ(O为坐标原点)的面积;
(ⅱ)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com