精英家教网 > 高中数学 > 题目详情

对于定义域为的函数,如果存在区间,同时满足:
内是单调函数;②当定义域是值域也是,则称是函数
的“好区间”.
(1)设(其中),判断是否存在“好区间”,并
说明理由;
(2)已知函数有“好区间”,当变化时,求的最大值.

(1)不存在“好区间”;(2)的最大值为.

解析试题分析:(1)先求出的定义域.可知要对分情况讨论,当时,定义域内是增函数;当时,定义域内还是增函数.从而得出,即方程在定义域内有两个不等的实数根,即在定义域内有两个不等的实数根.再用换元法,设,则相当于两个不等的实数根,即内有两个不等的实数根,通过研究二次函数,发现内有两个不等的实数根无解,所以函数不存在“好区间”;(2)函数有“好区间”,由于定义域为,易知函数上单调递增,,所以是方程,即方程有同号的相异实数根,然后再用判别式求出的范围,再用韦达定理用表示出,结合的范围即可求出的最大值.
试题解析:(1)由.              2分
①当时,,此时定义域



内是增函数;              4分
②当时,,此时定义域
同理可证内是增函数;              6分
存在“好区间”
关于的方程在定义域内有两个不等的实数根.
在定义域内有两个不等的实数根.(*)
,则(*)
内有两个不等的实数根,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值,并确定函数的定义域;
(2)用定义研究函数范围内的单调性;
(3)当时,求出函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若在其定义域内为单调递增函数,求实数的取值范围;
(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,试判断此函数上的单调性,并求此函数
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)设,,证明:在区间内存在唯一的零点;
(2) 设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设内的零点,判断数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;
(Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案