已知函数
,试判断此函数
在
上的单调性,并求此函数![]()
在
上的最大值和最小值.
科目:高中数学 来源: 题型:解答题
已知函数
在
处取得极值
.
(Ⅰ)求
的解析式;
(Ⅱ)设
是曲线
上除原点
外的任意一点,过
的中点且垂直于
轴的直线交曲线于点
,试问:是否存在这样的点
,使得曲线在点
处的切线与
平行?若存在,求出点
的坐标;若不存在,说明理由;
(Ⅲ)设函数
,若对于任意
,总存在
,使得
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于定义域为
的函数
,如果存在区间
,同时满足:
①
在
内是单调函数;②当定义域是
,
值域也是
,则称
是函数![]()
的“好区间”.
(1)设
(其中
且
),判断
是否存在“好区间”,并
说明理由;
(2)已知函数
有“好区间”
,当
变化时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)当
时,讨论函数
的单调性:
(2)若函数
的图像上存在不同两点
,设线段
的中点为
,使得
在点
处的切线
与直线
平行或重合,则说函数
是“中值平衡函数”,切线
叫做函数
的“中值平衡切线”。试判断函数
是否是“中值平衡函数”?若是,判断函数
的“中值平衡切线”的条数;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com