精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,讨论函数的单调性:
(2)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”。试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

(1)函数的递增区间是,递减区间是;(2)当时,函数是“中值平衡函数”且函数的“中值平衡切线”有无数条,当时,函数不是“中值平衡函数”.

解析试题分析:(1)对进行讨论,求导数,令导数大于0或小于0,求单调递增或递减区间;(2)先假设它是“中值平衡函数”,设出两点,讨论的情况,看是否符合题意.
试题解析:(1)              1分
时,,函数在定义域上是增函数;  2分
时,由得到,  4分
所以:当时,函数的递增区间是,递减区间是;                            5分
时,由得到:
所以:当时,函数的递增区间是,递减区间是;  7分
(2)若函数是“中值平衡函数”,则存在)使得

,(*)                     4分
时,(*)对任意的都成立,所以函数是“中值平衡函数”,且函数的“中值平衡切线”有无数条;                   8分
时,设,则方程在区间上有解,      10分
记函数,则,       12分
所以当时,,即方程在区间上无解,
即函数不是“中值平衡函数”.                     14分
考点:1.求切线的斜率;2.用导数求函数的单调性;3.分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,试判断此函数上的单调性,并求此函数
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数.
(1)判断函数的奇偶性;
(2)若当时,恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
若函数上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,在处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2﹣|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,请用定义证明上为减函数.

查看答案和解析>>

同步练习册答案