已知函数
在
处取得极值
.
(Ⅰ)求
的解析式;
(Ⅱ)设
是曲线
上除原点
外的任意一点,过
的中点且垂直于
轴的直线交曲线于点
,试问:是否存在这样的点
,使得曲线在点
处的切线与
平行?若存在,求出点
的坐标;若不存在,说明理由;
(Ⅲ)设函数
,若对于任意
,总存在
,使得
,求实数
的取值范围.
(Ⅰ)
;(Ⅱ)存在,坐标为
;(Ⅲ)
的取值范围是
.
解析试题分析:(Ⅰ)由题意知
科目:高中数学
来源:
题型:解答题
已知函数f(x)=2﹣|x|,无穷数列{an}满足an+1=f(an),n∈N*
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
,解出
;(Ⅱ)先假设存在这样的点并设出点的坐标
,然后根据斜率相等列出等式,解得
即可;(Ⅲ)有3中解法,1的基本思路是:先利用导数求得
的最小值,然后说明
在
上的最小值不能大于
的最小值,根据这一条件求得
的范围;2的基本思路是:先利用导数求得
的最小值-2,要使总存在
,使得
成立,说明
在
上有解,利用二次函数知识解答;3的基本思路和2有相似地方,只是在说明
在
上有解时,不是利用二次函数知识,而是利用换元和分离参数法解答.
试题解析:⑴∵
,∴
.又
在
处取得极值
.
∴
,即
,解得
,
,经检验满足题意,∴
.
⑵由⑴知
.假设存在满足条件的点
,且
,则
,
又
.则由
,得
,∴
,∵
,
∴
,得
.故存在满足条件的点![]()
此时点
的坐标为
或
.
⑶解法
:
,令
,得
或
.
当
变化时,
、
的变化情况如下表:![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号