精英家教网 > 高中数学 > 题目详情
8.在等比数列{an}中,a1+a3+a5=21,a2+a4+a6=42,则S9=(  )
A.255B.256C.511D.512

分析 利用等比数列通项公式与求和公式及其性质即可得出.

解答 解:设等比数列{an}的公比为q,∵a1+a3+a5=21,a2+a4+a6=42,
∴a2+a4+a6=q(a1+a3+a5)=21q=42,解得q=2.
代入a1(1+q2+q4)=21,解得a1=1.
则S9=$\frac{{2}^{9}-1}{2-1}$=511.
故选:C.

点评 本题考查了等比数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线4x-3y+c=0的距离为1,则实数c的取值范围是(-5,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若不等式x2-logax<0对x∈(0,$\frac{1}{2}$)恒成立,则实数a的取值范围是(  )
A.0<a<1B.$\frac{1}{16}$≤a<1C.a>1D.0<a≤$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当a=3,b=5,c=7时,执行如图所示的程序框图,输出的m值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,则以下不等式中恒成立的是(  )
A.$(a+b)(\frac{1}{a}+\frac{1}{b})≥4$B.a3+b3≥2abC.a2+b2≥2a+2bD.$\sqrt{|{a-b}|}$≤$|\sqrt{a}-\sqrt{b}|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|x|+|x+10|.
(Ⅰ)求f(x)≤x+15的解集M;
(Ⅱ)当a,b∈M时,求证:5|a+b|≤|ab+25|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)的定义域为实数集R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3\end{array}$对于任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰有三个不同的零点,则实数m的取值范围是$[{-\frac{1}{2},-\frac{1}{6}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点M(0,2),椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,椭圆E上一点G与椭圆长轴上的两个顶点A,B连线的斜率之积等于-$\frac{1}{4}$.
(Ⅰ)求E的方程;
(Ⅱ)设过点M的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2-(2a-1)x+2在区间$({-∞,\frac{1}{2}}]$上是减函数,则实数a的取(  )
A.a≤1B.a≥1C.a<1D.a>1

查看答案和解析>>

同步练习册答案