精英家教网 > 高中数学 > 题目详情

【题目】杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为开方作法本源图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了古法七乘方图”.故此,杨辉三角又被称为贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:

基于上述规律,可以推测,当时,从左往右第22个数为_____________.

【答案】253

【解析】

根据,共有个数,则所求为这一行的倒数第个数,找到每一行倒数第个数的规律,从而得到所求.

时,共有个数,从左往右第个数即为这一行的倒数第个数,

观察可知,每一行倒数第个数(从第行,开始)

即为

所以当时,左往右第个数为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为

(1)求椭圆的标准方程;

(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为EBD的中点为M,点FN在棱AC上,且AF3CFC.

1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;

2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙、丙两位同学从四种比赛中任选两种参与.

1)求甲、乙同时参加围棋比赛的概率;

2)记甲、乙、丙三人中选择“中国象棋”比赛的人数为,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取名,抽到~岁女居民的概率是.现用分层抽样的方法在全小区抽取名居民,则应在岁以上抽取的女居民人数为(

岁—

岁—

岁以上

女生

男生

<>

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点分别为,以为圆心,为半径的圆交的右支于两点,若的一个内角为,则的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:

甜品种类

A甜品

B甜品

C甜品

D甜品

E甜品

销售总额(万元)

10

5

20

20

12

销售额(千份)

5

2

10

5

8

利润率

0.4

0.2

0.15

0.25

0.2

(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.

1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;

2)从该甜品店的五种网红甜品中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;

3)假设每类甜品利润率不变,销售一份A甜品获利元,销售一份B甜品获利元,,销售一份E甜品获利元,依据上表统计数据,随机销售一份甜品获利的期望为,设,试判断的大小.

查看答案和解析>>

同步练习册答案