精英家教网 > 高中数学 > 题目详情

已知函数处取得极值 .
(I)求实 数a和b.         (Ⅱ)求f(x)的单调区间

(1), b=-1
(2)函数的增区间为,减区间为

解析试题分析: 根据题意,由于函数处取得极值 .则,且有f(-1)=2,-1+a+5+b=2,b=-1.
,可知当y’>0,即可知x 函数递增,当函数递减,故可知函数的增区间为,减区间为
考点:导数的运用
点评:主要是考查了导数在研究函数单调性的中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,试讨论此函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的周期和递增区间;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,求曲线在点处的切线方程;求函数的极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,
⑴求导数
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数 
(1)探索函数的单调性;
(2)是否存在实数,使函数为奇函数?

查看答案和解析>>

同步练习册答案