【题目】某大学生自主创业,经销某种农产品,在一个销售季度内,每售出该产品获利润800元,未售出的产品,每亏损200元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.该大学生为下一个销售季度购进了该农产品.以(单位:)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将表示为的函数;
(2)根据直方图估计利润不少于94000元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若,则取,且的概率等于需求量落入的频率),求的均值.
科目:高中数学 来源: 题型:
【题目】已知,为椭圆的左右焦点,在以为圆心,1为半径的圆上,且.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点,过与垂直的直线交圆于,两点,为线段的中点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为.
(1)求曲线的直角坐标方程;
(2)设曲线与直线交于点,点的坐标为(3,1),求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点与抛物线y2=4x的焦点相同,F1,F2为C的左右焦点,M为C上任意一点,最大值为1.
(1)求椭圆C的方程;
(2)不过点F2的直线l:y=kx+m(m≠0)交椭圆C于A,B两点.
①若,且,求m的值.
②若x轴上任意一点到直线AF2与BF2距离相等,求证:直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本学期开学前后,国务院下发了《新一代人工智能发展规划》,要求从小学教育,中学教育,到大学院校,逐步新增人工智能课程,建设全国人才梯队,凸显了我国抢占人工智能新高地的决心和信心.如图,三台机器人、、和检测台(位置待定)(与、、共线但互不重合),三台机器人需把各自生产的零件送交处进行检测,送检程序如下:当把零件送达处时,即刻自动出发送检;当把零件送达处时,即刻自动出发送检.设、的送检速度的大小为2,的送检速度大小为1.则三台机器人、、送检时间之和的最小值为( ).
A.8B.6C.5D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com