精英家教网 > 高中数学 > 题目详情
10.(理科做)已知a,b,c分别是△ABC的角A,B,C的对边,$\overrightarrow{m}$=(2a+c,b),$\overrightarrow{n}$=(cosB,cosC),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)若b=$\sqrt{3}$,求△ABC外接圆半径长及△ABC面积的最大值.

分析 (1)利用两个向量的数量积,两角和的正弦公式、诱导公式求得cosB的值,可得B的值.再根据 S△ABC=$\sqrt{3}$,以及余弦定理求得a的值.
(2)利用正弦定理、基本不等式求得ac的最大值,可得△ABC面积为S的最大值.

解答 解:(1)△ABC中,∵$\overrightarrow{m}$=(2a+c,b),$\overrightarrow{n}$=(cosB,cosC),
且$\overrightarrow{m}$•$\overrightarrow{n}$=(2a+c)cosB+bcosC=0,
∴再利用正弦定理可得2sinAcosB+sinCcosB+sinBcosC=0,
即2sinAcosB=-sin(B+C)=-sinA,∴cosB=-$\frac{1}{2}$,∴B=$\frac{2π}{3}$.
由正弦定理可得△ABC的外接圆的直径2R=$\frac{b}{sinB}$=$\frac{\sqrt{21}}{\frac{\sqrt{3}}{2}}$.
∵S△ABC=$\frac{1}{2}$ac•sinB=$\frac{1}{2}$ac•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,∴ac=4  ①.
∵b=$\sqrt{21}$,再利用余弦定理可得b2=a2+c2-2ac•cosB=a2+c2+ac=21②,
由①②求得a=4,或a=1.
(2)由(1)可得B=$\frac{2π}{3}$,∵b=$\sqrt{21}$,设△ABC的外接圆的圆心为O,
由余弦定理可得b2=3=a2+c2-2ac•cosB=a2+c2+ac≥3ac,
∴ac≤1,故△ABC面积为 S=$\frac{1}{2}$•ac•sinB≤$\frac{1}{2}$•1•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
故△ABC面积为S的最大值为$\frac{\sqrt{3}}{4}$.

点评 本题主要考查两个向量的数量积,两角和的正弦公式、诱导公式,正弦定理,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式|5x-x2|<6的解集是{x|-1<x<2或3<x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PE⊥平面ABCD,垂足E在线段AD上.且AE=$\frac{1}{3}$ED.
(I)在PC上是否存在一点M,使DM∥平面PBE;
(Ⅱ)若EB⊥EC,CD=$\sqrt{5}$,PB=PC=2$\sqrt{3}$.求二面角P-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC 上的点,MN⊥PB.
(Ⅰ)求证:平面PBC⊥平面PAB;
(Ⅱ)求证:当点M 不与点P,B 重合时,MN∥平面ABCD;
(Ⅲ)当AB=3,PA=4时,求点A到直线MN距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,BC为圆O的直径,A为圆O上一点,过点A的直线与圆O相切,且与线段BC的延长线交于点D,E为线段AC延长线上的一点,且ED∥AB.
(1)求证AC•AD=AB•CD;
(2)若DE=4,DC=5,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,直线ρsin(θ+$\frac{π}{4}$)=2被曲线ρ=4截得的弦长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,证明:f(b)≥f(a),并说明等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=log0.8(2x2-ax+3)在区间(-1,+∞)内为减函数,则实数a的取值范围是[-5,-4].

查看答案和解析>>

同步练习册答案