精英家教网 > 高中数学 > 题目详情
已知f(x)=2x3+3ax2-12a2x+2a,a∈R.
(1)若f(x)在区间(0,1)内有零点且单调递减,求实数a的取值范围;
(2)若g(x)=f(x)+2x-x2的区间(0,1)内存在极小值,求实数a的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求导数,分类讨论,利用f(x)在区间(0,1)内有零点且单调递减,求实数a的取值范围;
(2)△≤0时,g′(x)≥0成立,即g(x)在R上单调递增,不存在极值;△>0时,
g′(0)≥0
g′(1)>0
△>0
0<
2(1-3a)
12
<1
g′(0)<0
g′(1)>0
,即可求实数a的取值范围.
解答: 解:(1)∵f(x)=2x3+3ax2-12a2x+2a,
∴f′(x)=6(x+2a)(x-a),
a>0,当且仅当x∈(-2a,a),f′(x)<0,从而f(x)在(-2a,a)上单调递减,则
f(0)>0
f(a)<0
-2a≤0
a≥1
,∴a≥1;
同理a<0无解;
a=0时,f(x)=x3在(0,1)上无零点,
综上,a≥1;
(2)∵g(x)=f(x)+2x-x2
∴g′(x)=6x2+2(3a-1)x+2-12a2
△=4(27a-11)(3a+1).
△≤0时,g′(x)≥0成立,即g(x)在R上单调递增,不存在极值;
△>0时,
g′(0)≥0
g′(1)>0
△>0
0<
2(1-3a)
12
<1
g′(0)<0
g′(1)>0

解得-
1
2
<a<-
1
3
6
6
<a<1
点评:本题考查导数知识的综合运用,考查函数的单调性与极值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a∈R),设F(x)=f(x)+g(x),G(x)=f(x)•g(x)
(1)求函数F(x)的单调区间;
(2)若以函数y=F(x)(x∈(0,2))图象上任一点P(x0,y0)为切点的切线斜率为k≤
1
2
恒成立,求实数a的取值范围;
(3)当a=1时,对任意的x1,x2∈(0,2),且x1<x2,已知存在x0∈(x1,x2)使得G′(x0)=
G(x2)-G(x1)
x2-x1
,求证:x0
x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:xsina-y+1=0(a∈R),求其倾斜角φ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x=1和x=2是函数f(x)=alnx+bx2+x的两个极值点
(1)求a,b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3+x2+ax+1
在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:f(x2
11
12

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4},且A={x|x2-5x+m=0,x∈U},若∁UA={1,4}.
(1)求集合A;
(2)求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)集合A={(x,y)|2x+y=10},B={(x,y)|3x-y=5},求A∩B;
(2)集合A={(x,y)|2x+y=10},B={y|3x-y=5},求A∩B;
(3)设集合A={y|2x+y=10},B={y|3x-y=5},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x(1+alnx)
x-1
(x>1).
(1)若g(x)=(x-l)2f′(x)在(1,+∞)是增函数,求实数a的取值范围;
(2)当a=1时,若f(x)>n恒成立,求满足条件的正整数n的最大值;
(3)求证:(1+1×3)×(1+3×5)×…×[1+(2n-l)(2n+l)]>e 2n-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x3
3
+x2-3x-4在[0,2]上的最小值为
 

查看答案和解析>>

同步练习册答案