| A. | $2\sqrt{3}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
分析 方法一:由题意可知:则M为线段PF2的中点,则M($\frac{x+c}{2}$,$\frac{y}{2}$),根据向量数量积的坐标运算,即可求得x=2c,利用两点之间的距离公式,即可求得y=$\sqrt{3}$c,利用双曲线的定义,即可求得a=($\sqrt{3}$-1)c,利用双曲线的离心率公式即可求得该双曲线的离心率.
方法二:由题意可知:2$\overrightarrow{OM}$=$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$,则M为线段PF2的中点,根据向量的数量积,求得cos∠OF2M,利用余弦定理即可求得丨OM丨,根据三角形的中位线定理及双曲线的定义丨PF1丨-丨PF2丨=2a,a=($\sqrt{3}$-1)c,即可求得双曲线的离心率.
解答 解:设P(x,y),F1(-c,0),F2(c,0),
由题意可知:2$\overrightarrow{OM}$=$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$,则M为线段PF2的中点,则M($\frac{x+c}{2}$,$\frac{y}{2}$),
则$\overrightarrow{O{F}_{2}}$=(c,0),$\overrightarrow{{F}_{2}M}$=($\frac{x-c}{2}$,$\frac{y}{2}$),
则$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=$\frac{x-c}{2}$×c=$\frac{{c}^{2}}{2}$解得:x=2c,
由丨$\overrightarrow{O{F}_{2}}$丨=丨$\overrightarrow{{F}_{2}M}$丨=c,即$\sqrt{\frac{{c}^{2}}{4}+\frac{{y}^{2}}{4}}$=c,解得:y=$\sqrt{3}$c,
则P(2c,$\sqrt{3}$c),由双曲线的定义可知:丨PF1丨-丨PF2丨=2a,
即$\sqrt{(3c)^{2}+3{c}^{2}}$-$\sqrt{{c}^{2}+3{c}^{2}}$=2a,a=($\sqrt{3}$-1)c,
由双曲线的离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}+1}{2}$,
∴该双曲线的离心率$\frac{\sqrt{3}+1}{2}$,
故选D.![]()
方法二:由题意可知:2$\overrightarrow{OM}$=$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$,则M为线段PF2的中点,
则OM为△F2F1P的中位线,
$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=-$\overrightarrow{{F}_{2}O}$•$\overrightarrow{{F}_{2}M}$=-丨$\overrightarrow{{F}_{2}O}$丨•丨$\overrightarrow{{F}_{2}M}$丨cos∠OF2M=$\frac{{c}^{2}}{2}$,
由丨$\overrightarrow{O{F}_{2}}$丨=丨$\overrightarrow{{F}_{2}M}$丨=c,则cos∠OF2M=-$\frac{1}{2}$,
由正弦定理可知:丨OM丨2=丨$\overrightarrow{O{F}_{2}}$丨2+丨$\overrightarrow{{F}_{2}M}$丨2-2丨$\overrightarrow{O{F}_{2}}$丨丨$\overrightarrow{{F}_{2}M}$丨cos∠OF2M=3c2,
则丨OM丨=$\sqrt{3}$c,则丨PF1丨=2$\sqrt{3}$,丨PF2丨=丨MF2丨=2c,
由双曲线的定义丨PF1丨-丨PF2丨=2a,a=($\sqrt{3}$-1)c,
由双曲线的离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}+1}{2}$,
∴该双曲线的离心率$\frac{\sqrt{3}+1}{2}$,
故选D.
点评 本题考查双曲线的简单几何性质,向量的坐标运算,两点之间的距离公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com