精英家教网 > 高中数学 > 题目详情
8.已知直线l1:mx+3y+3=0,l2:x+(m-2)y+1=0,则“m=3”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据直线的平行关系求出m的值,再根据充分必要条件的定义判断即可.

解答 解:若“l1∥l2”,
则m(m-2)=3,解得:m=3或m=-1,
而m=3时,直线重合,
故m=-1,
故“m=3”是“l1∥l2”的既不充分也不必要条件,
故选:D.

点评 本题考查了充分必要条件,考查直线的平行关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和对称轴的方程;
(Ⅱ)求f(x)在区间$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点F2,P分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点与右支上的一点,O为坐标原点,若2$\overrightarrow{OM}=\overrightarrow{OP}+\overrightarrow{O{F_2}},|{\overrightarrow{O{F_2}}}|=|{\overrightarrow{{F_2}M}}$|,且$\overrightarrow{O{F_2}}•\overrightarrow{{F_2}M}=\frac{c^2}{2}$,则该双曲线的离心率为(  )
A.$2\sqrt{3}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面积是梯形ABCD面积的$\frac{4}{3}$,求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知三内角A,B,C成等差数列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)设角A,B,C所对的边分别为a,b,c,且a=5,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足$\left\{\begin{array}{l}{3x-y-7≥0}\\{5x-4y≤0}\\{y≤10}\end{array}\right.$,则$\frac{y+x}{x}$的最大值为(  )
A.1B.$\frac{30}{17}$C.$\frac{47}{17}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|3x-1|-2|x|+2.
(1)解不等式:f(x)<10;
(2)若对任意的实数x,f(x)-|x|≤a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$的最小正周期为4π,则(  )
A.函数f(x)的图象关于原点对称
B.函数f(x)的图象关于直线$x=\frac{π}{3}$对称
C.函数f(x)图象上的所有点向右平移$\frac{π}{3}$个单位长度后,所得的图象关于原点对称
D.函数f(x)在区间(0,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an+1}是一个各项均为正数的等比数列,已知a3=7,a7=127.
(1)求的a1值;
(2)求数列{an}的前n项和.

查看答案和解析>>

同步练习册答案