精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|3x-1|-2|x|+2.
(1)解不等式:f(x)<10;
(2)若对任意的实数x,f(x)-|x|≤a恒成立,求实数a的取值范围.

分析 (1)分类讨论,解不等式:f(x)<10;
(2)对任意的实数x,f(x)-|x|≤a恒成立,即|3x-1|-|3x|≤a-2,利用|3x-1|-|3x|≤|3x-1-3x|=1,即可求实数a的取值范围.

解答 解:(1)x<0时,不等式化为-3x+1+2x+2<10,解得x>-7,∴-7<x<0;
0$≤x≤\frac{1}{3}$时,不等式化为-3x+1-2x+2<10,解得x>-$\frac{7}{5}$,∴0$≤x≤\frac{1}{3}$;
x>$\frac{1}{3}$时,不等式化为3x-1-2x+2<10,解得x<9,∴$\frac{1}{3}<x<9$;
综上所述,不等式的解集为(-7,9);
(2)对任意的实数x,f(x)-|x|≤a恒成立,即|3x-1|-|3x|≤a-2,
∵|3x-1|-|3x|≤|3x-1-3x|=1,
∴a-2≥1,∴a≥3.

点评 本题考查不等式的解法,考查恒成立问题,考查绝对值不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=(  )
A.(2,4)B.(2,4]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:mx+3y+3=0,l2:x+(m-2)y+1=0,则“m=3”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=2cos(ωx+$\frac{3}{2}$π)(ω>0)的最小正周期为2π,则函数f(x)图象的一条对称轴方程为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{3}{4}$πD.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,圆C的圆心在极轴上,且过极点和点$({3\sqrt{2},\frac{π}{4}})$,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数i(2-i)在复平面内所对应的点的坐标为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若等比数列{an}的各项均为正数,且a3-a1=2,则a5的最小值为8.

查看答案和解析>>

同步练习册答案