分析 (1)分类讨论,解不等式:f(x)<10;
(2)对任意的实数x,f(x)-|x|≤a恒成立,即|3x-1|-|3x|≤a-2,利用|3x-1|-|3x|≤|3x-1-3x|=1,即可求实数a的取值范围.
解答 解:(1)x<0时,不等式化为-3x+1+2x+2<10,解得x>-7,∴-7<x<0;
0$≤x≤\frac{1}{3}$时,不等式化为-3x+1-2x+2<10,解得x>-$\frac{7}{5}$,∴0$≤x≤\frac{1}{3}$;
x>$\frac{1}{3}$时,不等式化为3x-1-2x+2<10,解得x<9,∴$\frac{1}{3}<x<9$;
综上所述,不等式的解集为(-7,9);
(2)对任意的实数x,f(x)-|x|≤a恒成立,即|3x-1|-|3x|≤a-2,
∵|3x-1|-|3x|≤|3x-1-3x|=1,
∴a-2≥1,∴a≥3.
点评 本题考查不等式的解法,考查恒成立问题,考查绝对值不等式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{4}$ | B. | x=$\frac{π}{2}$ | C. | x=$\frac{3}{4}$π | D. | x=π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com