精英家教网 > 高中数学 > 题目详情
3.在△ABC中,已知三内角A,B,C成等差数列,且sin($\frac{π}{2}$+A)=$\frac{11}{14}$.
(Ⅰ)求tanA及角B的值;
(Ⅱ)设角A,B,C所对的边分别为a,b,c,且a=5,求b,c的值.

分析 (Ⅰ)根据等差数列的性质可得B=$\frac{π}{3}$,再根据诱导公式和同角的三角函数的关系即可求出tanA.
(Ⅱ)根据正弦定理求出b,再根据余弦定理求出c.

解答 解:(Ⅰ)∵A,B,C成等差数列,
∴2B=A+C,
又A+B+C=π,
则B=$\frac{π}{3}$,
∵sin($\frac{π}{2}$+A)=$\frac{11}{14}$,
∴cosA=$\frac{11}{14}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5\sqrt{3}}{14}$,
∴tanA=$\frac{sinA}{cosA}$=$\frac{5\sqrt{3}}{11}$;
(Ⅱ)由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴b=$\frac{5×\frac{\sqrt{3}}{2}}{\frac{5\sqrt{3}}{14}}$=7,
由余弦定理可得a2=b2+c2-2bccosA,
即25=49+c2-11c,
解得c=3或c=8,
∵cosA=$\frac{11}{14}$>cos$\frac{π}{3}$,
∴A<$\frac{π}{3}$,
∴C>$\frac{π}{3}$,
∴c=3舍去,
故c=8.

点评 本题考查了正弦定理、余弦定理,内角和定理,以及等差中项的性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等差数列,其前n项和Sn有最大值,且$\frac{{{a_{2017}}}}{{{a_{2016}}}}$<-1,则使得Sn>0的n的最大值为(  )
A.2016B.2017C.4031D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a-b)(sinA+sinB)=(c-b)sinC,则角A等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:mx+3y+3=0,l2:x+(m-2)y+1=0,则“m=3”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,圆C的圆心在极轴上,且过极点和点$({3\sqrt{2},\frac{π}{4}})$,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知奇函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,点M的坐标为(1,0)且△MNE为等腰直角三角形,当A的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案