分析 (1)利用正弦定理化简已知条件,通过三角形内角求解A的大小即可.
(2)由三角形的面积公式求出ab=2,再根据余弦定理即可求出b+c的值.
解答 解:(1)asinB=$\sqrt{3}$bcosA,由正弦定理可得sinAsinB=$\sqrt{3}$sinBcosA,
∵B是三角形内角,∴sinB≠0,
∴tanA=$\sqrt{3}$,A是三角形内角,
∴A=$\frac{π}{3}$.
(2)∵S=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{2}$,
∴bc=2,
由余弦定理a2=b2+c2-2bccosA,可得3=b2+c2-bc=(b+c)2-3bc=(b+c)2-6,
∴b+c=3.
点评 本题考查正弦定理以及余弦定理,三角形面积公式在解三角形中的应用,考查计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6种 | B. | 12种 | C. | 18种 | D. | 24种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1.75 | C. | 1.732 | D. | 1.73 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{5}{3}$ | B. | 1 | C. | 2 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com