精英家教网 > 高中数学 > 题目详情
6.cos2$\frac{π}{12}+sin\frac{π}{12}cos\frac{π}{12}$=$\frac{3+\sqrt{3}}{4}$.

分析 利用利用二倍角公式、半角公式化简所给的式子,可得结果.

解答 解:cos2$\frac{π}{12}+sin\frac{π}{12}cos\frac{π}{12}$=$\frac{1+cos\frac{π}{6}}{2}$+$\frac{1}{2}$sin$\frac{π}{6}$=$\frac{1}{2}$+$\frac{1}{2}•\frac{\sqrt{3}}{2}$+$\frac{1}{2}•\frac{1}{2}$=$\frac{3+\sqrt{3}}{4}$,
,故答案为:$\frac{{3+\sqrt{3}}}{4}$.

点评 本题主要考查利用二倍角公式、半角公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的公比q=2,前3项和是7,等差数列{bn}满足b1=3,2b2=a2+a4
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列$\left\{{\frac{2}{{(2n-1){b_n}}}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a-b)(sinA+sinB)=(c-b)sinC,则角A等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴长为2$\sqrt{3}$,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线AM与直线x=2交于点N,线段BN的中点为E.证明:点B关于直线EF的对称点在直线MF上.

查看答案和解析>>

同步练习册答案