精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

分析 作出不等式组对应的平面区域,利用数形结合即可得到结论.

解答 解:由z=y-2x,则y=2x+z
作出不等式组对应的平面区域如图:
平移直线y=2x+z,由图象知当直线y=2x+z,经过点A时,直线y=2x+z的截距最大,此时m最大,
当直线y=2x+z经过点B时,直线y=2x+z的截距最小,
此时z最小,
由$\left\{\begin{array}{l}{x-1=0}\\{2x+y=2}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即B(1,0),
此时z=0-2=-2,
即z=y-2x的最小值-2,
给答案为:-2.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,--就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为$\frac{1}{3}$,问在敬酒这环节小明喝酒三杯的概率是多少(  )
(猜拳只是一种娱乐,喝酒千万不要过量!)
A.$\frac{4}{9}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x+ex-a,$g(x)=\frac{1}{2}1n(2x+1)-4{e^{a-x}}$,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=4成立,则实数a的值为(  )
A.n2-1B.1-1n2C.1n2D.-1n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=asinx+ln(1-x).
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)在区间[0,1)上单调递减,求a的取值范围;
(3)求证:e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}满足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,则a8=85.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4本不同的名著中选出3本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有(  )
A.6种B.12种C.18种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.点A从(1,0)出发,沿单位圆按逆时针方向运动到点B,若点B的坐标是$(-\frac{3}{5},\frac{4}{5})$,记∠AOB=α,则sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.cos2$\frac{π}{12}+sin\frac{π}{12}cos\frac{π}{12}$=$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案