精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=asinx+ln(1-x).
(1)若a=1,求f(x)在x=0处的切线方程;
(2)若f(x)在区间[0,1)上单调递减,求a的取值范围;
(3)求证:e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

分析 (1)把a=1代入函数解析式,求出导函数,得到f′(0)及f(0),然后利用直线方程的点斜式得答案;
(2)由f(x)在区间[0,1)上单调递减,可得f′(x)=acosx-$\frac{1}{1-x}$≤0对x∈[0,1)恒成立,然后对a分类即可求得a的取值范围为(-∞,1];
(3)由(2)知,当a=1时,f(x)=sinx+ln(1-x)在(0,1)上单调递减,可得f(x)<f(0)=0,即sinx<ln$\frac{1}{1-x}$,由$sin\frac{1}{(n+1)^{2}}$<$ln\frac{1}{1-\frac{1}{(n+1)^{2}}}=ln\frac{(n+1)^{2}}{n(n+2)}$及$ln\frac{{2}^{2}}{1•3}+ln\frac{{3}^{2}}{2•4}+…+ln\frac{(n+1)^{2}}{n(n+2)}$=ln[$\frac{{2}^{2}}{1•3}•\frac{{3}^{2}}{2•4}…\frac{(n+1)^{2}}{n(n+2)}$]=$ln\frac{2(n+1)}{n+2}=ln[2(1-\frac{1}{n+2})]$<ln2.即可证得$sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}$<ln2.则e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

解答 (1)解:a=1时,f(x)=asinx+ln(1-x),
f′(x)=cosx-$\frac{1}{1-x}$,∴f′(0)=0,又f(0)=0,
∴f(x)在x=0处的切线方程为y=0;
(2)解:∵f(x)在区间[0,1)上单调递减,
∴f′(x)=acosx-$\frac{1}{1-x}$≤0对x∈[0,1)恒成立,
若a≤0,x∈[0,1)时,acosx-$\frac{1}{1-x}$≤0成立.
若a>0,acosx-$\frac{1}{1-x}$≤0?(1-x)cosx$≤\frac{1}{a}$.
令h(x)=(1-x)cosx,显然h(x)在[0,1)上单调递减,
∴h(x)≤h(0)=1,∴$\frac{1}{a}≥1$,则0<a≤1.
综上,a的取值范围为(-∞,1];
(3)证明:由(2)知,当a=1时,f(x)=sinx+ln(1-x)在(0,1)上单调递减,
∴f(x)<f(0)=0,即sinx<ln$\frac{1}{1-x}$,
而$\frac{1}{(n+1)^{2}}$∈(0,1),∴$sin\frac{1}{(n+1)^{2}}$<$ln\frac{1}{1-\frac{1}{(n+1)^{2}}}=ln\frac{(n+1)^{2}}{n(n+2)}$,
∴$sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}$<$ln\frac{{2}^{2}}{1•3}+ln\frac{{3}^{2}}{2•4}+…+ln\frac{(n+1)^{2}}{n(n+2)}$,
而$ln\frac{{2}^{2}}{1•3}+ln\frac{{3}^{2}}{2•4}+…+ln\frac{(n+1)^{2}}{n(n+2)}$=ln[$\frac{{2}^{2}}{1•3}•\frac{{3}^{2}}{2•4}…\frac{(n+1)^{2}}{n(n+2)}$]=$ln\frac{2(n+1)}{n+2}=ln[2(1-\frac{1}{n+2})]$<ln2.
∴$sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}$<ln2.
∴e${\;}^{sin\frac{1}{(1+1)^{2}}+sin\frac{1}{(2+1)^{2}}+…+sin\frac{1}{(n+1)^{2}}}$<2,(n∈N*).

点评 本题考查利用导数求过曲线上某点处的切线方程,考查利用导数研究函数的单调性,训练了由导数及放缩法证明函数不等式,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知矩阵$M=[{\begin{array}{l}1&a\\ 3&b\end{array}}]$的一个特征值λ1=-1,及对应的特征向量$\overrightarrow e=[{\begin{array}{l}1\\{-1}\end{array}}]$,求矩阵M的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知边长为$\sqrt{3}$的正△ABC的三个顶点都在球O的表面上,且OA与平面ABC所成的角为60°,则球O的表面积为$\frac{16}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
单价(元/只)1.21.51.8
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=m-|x-1|,(m>0),且f(x+1)≥0的解集为[-3,3].
(Ⅰ)求m的值;
(Ⅱ)若正实数a,b,c满足$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=m$,求证:a+2b+3c≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为丰富人民群众业余生活,某市拟建设一座江滨公园,通过专家评审筛选出建设方案A和B向社会公开征集意见.有关部门用简单随机抽样方法调查了500名市民对这两种方案的看法,结果用条形图表示如下:
(Ⅰ)根据已知条件完成下面的2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.01的前提下认为是否选择方案A和年龄段有关?
选择方案A选择方案B总计
老年人
非老年人
总计500
附:
(Ⅱ)根据(Ⅰ)的结论,能否提出一个更好的调查方法,使得调查结果更具代表性,说明理由.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1(-1,0),F2(1,0)分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的左、右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别在直线x=-2和x=2上,且AF1⊥BF1
(ⅰ) 当△ABF1为等腰三角形时,求△ABF1的面积;
(ⅱ) 求点F1,F2到直线AB距离之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案