精英家教网 > 高中数学 > 题目详情
8.某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4本不同的名著中选出3本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有(  )
A.6种B.12种C.18种D.24种

分析 根据题意,分2步进行分析:①、先《平凡的世界》、《红岩》、《老人与海》三本书中选出2本,②、将选出的2本与《红楼梦》全排列,对应分给三个同学,求出每一步的情况数目,由分类计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、先《平凡的世界》、《红岩》、《老人与海》三本书中选出2本,有C32=3种选法,
②、将选出的2本与《红楼梦》全排列,对应分给三个同学,有A33=6种情况,
则不同的分配方法共有3×6=18种;
故选:C.

点评 本题考查排列、组合的综合应用,注意《红楼梦》为必读,是受到限制的元素,要优先分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设正方形ABCD边长为2,H是边DA的中点,若在正方形ABCD内部随机取一点P,则满足|PH|<$\sqrt{2}$的概率为$\frac{2+π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
单价(元/只)1.21.51.8
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.为丰富人民群众业余生活,某市拟建设一座江滨公园,通过专家评审筛选出建设方案A和B向社会公开征集意见.有关部门用简单随机抽样方法调查了500名市民对这两种方案的看法,结果用条形图表示如下:
(Ⅰ)根据已知条件完成下面的2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.01的前提下认为是否选择方案A和年龄段有关?
选择方案A选择方案B总计
老年人
非老年人
总计500
附:
(Ⅱ)根据(Ⅰ)的结论,能否提出一个更好的调查方法,使得调查结果更具代表性,说明理由.
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等差数列,其前n项和Sn有最大值,且$\frac{{{a_{2017}}}}{{{a_{2016}}}}$<-1,则使得Sn>0的n的最大值为(  )
A.2016B.2017C.4031D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1(-1,0),F2(1,0)分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的左、右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若A,B分别在直线x=-2和x=2上,且AF1⊥BF1
(ⅰ) 当△ABF1为等腰三角形时,求△ABF1的面积;
(ⅱ) 求点F1,F2到直线AB距离之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的公比q=2,前3项和是7,等差数列{bn}满足b1=3,2b2=a2+a4
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列$\left\{{\frac{2}{{(2n-1){b_n}}}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,$asinB=\sqrt{3}bcosA$.
(1)求角A的大小;
(2)若$a=\sqrt{3}$,$S=\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

同步练习册答案