精英家教网 > 高中数学 > 题目详情
1.数列{an}满足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,则a8=85.

分析 (a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,n≥2时,(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)=2n-2,可得an+an+1=2n.进而得到an+1-an-1=2n-1.利用“累加求和”方法即可得出.

解答 解:(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,
n≥2时,(a1+a2)+(a2+a3)+(a3+a4)+…+(an-1+an)=2n-2,
∴an+an+1=2n
n≥3时,an-1+an=2n-1
∴an+1-an-1=2n-1
∵a1=1,可得a2=22-2-1=1.
则a8=(a8-a6)+(a6-a4)+(a4-a2)+a2=26+24+22+1=$\frac{{4}^{4}-1}{4-1}$=85.
故答案为:85.

点评 本题考查了等比数列的通项公式与求和公式及其性质、数列的递推关系、累加求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:
(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级一等品二等品三等品
重量(g)[5,25)[25,45)[45,55]
按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ-sinθ)=4,且与曲线C相交于A,B两点.
(Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足条件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,则z=y-2x的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},则A∩B=(  )
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-2≤x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}是等差数列,其前n项和Sn有最大值,且$\frac{{{a_{2017}}}}{{{a_{2016}}}}$<-1,则使得Sn>0的n的最大值为(  )
A.2016B.2017C.4031D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|1≤x≤4},B={x|x>2},那么A∪B=(  )
A.(2,4)B.(2,4]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别是角A,B,C的对边,△ABC的面积为S,(a2+b2)tanC=8S,且sinAcosB=2cosAsinB,则cosA=$\frac{{\sqrt{30}}}{15}$.

查看答案和解析>>

同步练习册答案