精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},则A∩B=(  )
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|-1≤x≤1}D.{x|-2≤x≤-1}

分析 解出关于A的不等式,根据交集的运算求出A、B的交集即可.

解答 解:A={x|x2-2x-3≥0}={x|x≥3或x≤-1},B={x|-2≤x≤2},
则A∩B=[-2,-1]
故选:D.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=5|PF2|,则此双曲线的离心率的取值范围是(  )
A.(1,$\sqrt{3}$]B.(1,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}2a-x,x≤0\\{log_a}x,x>0\end{array}\right.$(a>0且a≠1),若f(f(1))=1,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”下图是根据刘徽的“割圆术”思想设计的一个程序框图.若运行该程序,则输出的n的值为:(参考数据:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)(  )
A.48B.36C.30D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}满足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1-2,则a8=85.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{20}$=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和对称轴的方程;
(Ⅱ)求f(x)在区间$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\;\\ y≤x\;\\ x+y+a≤0\;\end{array}\right.$且z=x+3y的最大值为4,则实数a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=$\sqrt{2}$,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面积是梯形ABCD面积的$\frac{4}{3}$,求点E到平面PBC的距离.

查看答案和解析>>

同步练习册答案