精英家教网 > 高中数学 > 题目详情
如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.
(1)见解析(2)见解析(3)135°

试题分析:(1)利用三垂线定理可证;(2)直线与平面平行的判定定理(Ⅲ)证,进而找出二面角的平面角
试题解析:(1)AB是PB在平面ABCD上的射影,
ABAC,AC平面ABCD, ACPB.
(2)连接BD,与AC相交与O,连接EO,
ABCD是平行四边形O是BD的中点又E是PD的中点, EOPB.又PB平面AEC,EO平面AEC,
PB平面AEC,
(3)如图,取AD的中点F,连EF,FO,则

EF是△PAD的中位线,EFPA又平面
同理FO是△ADC的中位线,FOABFO^AC,由三垂线定理可知ÐEOF是二面角E-AC-D的平面角.又FO=AB=PA=EF。
ÐEOF=45°而二面角与二面角E-AC-D互补,
故所求二面角的大小为135°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体中,已知为棱上的动点.

(1)求证:
(2)当为棱的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α∥平面β的一个充分条件是(  )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a?α,a∥β
C.存在两条平行直线a,b,a?α,b?β,a∥β,b∥α
D.存在两条异面直线a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l是直线,α,β是两个不同的平面(    )
A.若l//α,l//β,则α//β
B.若l//α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l//α,则l⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD的棱长为1,其中线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是(    )
A.[0,]B.[]
C.[]D.[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中正确命题是(     )
A.若,则
B.若,则
C.若,则
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
(1)若,则
(2)若,,则
(3)若,则
(4)若,则
其中正确的命题是(  )
A.(1)(3)B.(2)(3)
C.(2)(4)D.(3)(4)

查看答案和解析>>

同步练习册答案