精英家教网 > 高中数学 > 题目详情
平面α∥平面β的一个充分条件是(  )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a?α,a∥β
C.存在两条平行直线a,b,a?α,b?β,a∥β,b∥α
D.存在两条异面直线a,b,a?α,b?β,a∥β,b∥α
D
证明:对于A,一条直线与两个平面都平行,两个平面不一定平行.故A不对;
对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不对;
对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不对;
对于D,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,点在边上,
(1)求证:平面
(2)如果点的中点,求证://平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是菱形,,分别是的中点.

(1)求证:平面⊥平面
(2)上的动点,与平面所成的最大角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,平面.以
为邻边作平行四边形,连接

(1)求证:∥平面 ;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若
不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面为平行四边形的四棱锥中,
平面,且,点的中点.

(1)求证:
(2)求证:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
①若  
②若 
③若  
④若 
其中真命题的序号是(    )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和平面,且,则的位置关系是       .

查看答案和解析>>

同步练习册答案