精英家教网 > 高中数学 > 题目详情
有6×6的方阵,3辆完全相同的红车,3辆完全相同的黑车,它们均不在同一行且不在同一列,则所有的排列方法种数为
 
考点:计数原理的应用
专题:计算题,排列组合
分析:利用分步计数原理,第一步先选车,第二种再排列,问题得以解决.
解答: 解:第一步先选车有
C
3
6
种,第二步因为每一行、每一列都只有一辆车,每辆车占一格,从中选取一辆车后,把这辆车所在的行列全划掉,依次进行,则有
A
6
6
种,根据分步计数原理得;
C
3
6
A
6
6
=14400.
故答案为:14400.
点评:本题考查了分步计数原理的应用,关键是如何求出每辆车所在行列的可能性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是直线l:3x-4y+25=0上的动点,若过点P的直线m与圆O:x2+y2=9相交于两点A,B,则|PA|•|PB|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABCA1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:
(1)B1D⊥平面ABD;
(2)平面EGF∥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(-1,-1)在圆x2+y2+4mx-2y+5m=0的外部,则实数m的取值范围为(  )
A、(-4,+∞)
B、(-∞,
1
4
)∪(1,+∞)
C、(-4,
1
4
)∪(1,+∞)
D、(
1
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(1,1)是直线l被椭圆
x2
4
+
y2
3
=1所截得的线段的中点,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)y=x4-
5
x2

(2)y=xtanx;
(3)y=(x+1)(x+2)(x+3)
(4)y=lgx-2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)是增函数,也是偶函数
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}中a1=1,a4,a8,a16成等比数列,
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an2an,试求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(2a-3b-
2
3
)(-3a-1b)
 

查看答案和解析>>

同步练习册答案