| A. | (-∞,-$\frac{1}{e}$) | B. | (-$\frac{1}{e}$,0) | C. | (-$\frac{1}{e}$,+∞) | D. | (0,$\frac{1}{e}$) |
分析 求出当x<0时,函数f(x)的导数,判断函数的极值,作出函数f(x)的图象,判断函数f(x)=t的根的情况,利用数形结合进行求解即可.
解答
解:当x<0时,f(x)=-xex,
则f′(x)=-(x+1)ex,
由f′(x)=0得x=-1,
当x<-1时,f′(x)>0,
当-1<x<0时,f′(x)<0,
即当x=-1时,函数f(x)取得极大值,此时f(-1)=$\frac{1}{e}$,
且当x<0时,f(x)>0,
当x≥0时,f(x)=ln(x+1)≥0,
设t=f(x),
则当t=$\frac{1}{e}$时,方程t=f(x)有两个根,
当t>$\frac{1}{e}$或t=0时,方程t=f(x)有1个根,
当0<t<$\frac{1}{e}$时,方程t=f(x)有3个根,
当t<0时,方程t=f(x)有0个根,
则方程f2(x)+mf(x)=0(m∈R)等价为t2+mt=0,
即t=0或t=-m,
当t=0时,方程t=f(x)有1个根,
∴若方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,
则等价为t=f(x)有3个根,
即0<-m<$\frac{1}{e}$,得-$\frac{1}{e}$<m<0,
故选:B.
点评 本题主要考查函数根的个数的判断,求函数的导数,研究函数的取值范围,利用换元法和图象法进行求解是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | -$\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com