精英家教网 > 高中数学 > 题目详情
17.设i是虚数单位,若复数$a+\frac{5i}{1-2i}({a∈R})$是纯虚数,则a=(  )
A.-1B.1C.-2D.2

分析 利用复数代数形式的乘除运算化简,然后由实部等于0求得a值.

解答 解:∵$a+\frac{5i}{1-2i}=a+\frac{5i(1+2i)}{(1-2i)(1+2i)}$=$a+\frac{-10+5i}{5}=a-2+i$是纯虚数,
∴a=2.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合M={x∈N|x2-5x-6<0},N={x∈Z|2<x<23},则M∩N=(  )
A.(2,6)B.{3,4,5}C.{2,3,4,5,6}D.[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{e}$)B.(-$\frac{1}{e}$,0)C.(-$\frac{1}{e}$,+∞)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足:a1=c,2an+1=an+l(c≠1,n∈N*),记数列{an}的前n项和为Sn
(I)令bn=an-l,证明:数列{bn}是等比数列;
(Ⅱ)求最小的实数c,使得对任意n∈N*,都有Sn≥3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.分别求出符合下列要求的不同排法的种数.(用数字作答)
(1)7人排成一排,甲、乙两人不相邻;
(2)从7人中选出4人参加4×100米接力赛,甲、乙两人都必须参加,但甲不跑第一棒,乙不跑第四棒.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数$f(x)=\left\{\begin{array}{l}2x+2,x≤0\\{2^x}-4,x>0\end{array}\right.$,则f(f(1))的值为(  )
A.-10B.10C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={x|x2-2x-8≤0},B={x|2x<8},则A∩B=(  )
A.(-∞,2]B.[-2,3)C.[-4,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某建筑工地在施工过程中,为了保护一口直径为1米的圆形古井M,决定将其围起来,工地上现有一块长为2米(宽为1.2米)的木工板AB可利用,现将其围成高1.2米的围挡,如图,圆M与AB,PA,PB(PA,PB为另外两侧的围挡)均相切.
(1)若PA=PB,计算△PAB的面积;
(2)问:至少还需要添置多长的木工板.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若$\frac{h(x)-g(x)}{x-{x}_{0}}$>0在D内恒成立,则称P为函数y=h(x)的“类对称点”,则f(x)=lnx+x2-x的“类对称点”的横坐标是(  )
A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案