精英家教网 > 高中数学 > 题目详情
3.若A,B,C为圆O:x2+y2=1上的三点,且AB=1,BC=2,则$\overrightarrow{BO}$•$\overrightarrow{AC}$=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

分析 根据圆的性质可知BC为直径,△AOB是等边三角形,求出AC和∠ACB,代入向量的数量积运算即可.

解答 解:连结OA,OB,则OA=OB=AB=1,
∴△OAB是等边三角形,∴∠ABO=60°,
∵BC=2,∴BC是圆O的直径,
∴AC=$\sqrt{B{C}^{2}-A{B}^{2}}=\sqrt{3}$,∠ACB=30°,
∴$\overrightarrow{BO}$•$\overrightarrow{AC}$=1×$\sqrt{3}×cos30°$=$\frac{3}{2}$.
故选:D.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={2,a},B={x|1<x<4},若A∩B={2},则实数a的值不可能为(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,a4=-2,且al+a2+…+a10=65,则公差d的值是$\frac{17}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|$\frac{1}{2}$<x<3},B={x|(x+1)(x-2)<0},则A∩B=(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<3}C.{x|$\frac{1}{2}$<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{ln(x+1),x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,方程f2(x)+mf(x)=0(m∈R)有四个不相等的实数根,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{e}$)B.(-$\frac{1}{e}$,0)C.(-$\frac{1}{e}$,+∞)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F与抛物线C1:y2=4x的焦点重合,且点A($\frac{3}{2}$,$\sqrt{6}$)是两曲线的一个交点,过焦点F作一条直线l交椭圆C于M,N两点
(1)求椭圆C的标准方程;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-7,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.分别求出符合下列要求的不同排法的种数.(用数字作答)
(1)7人排成一排,甲、乙两人不相邻;
(2)从7人中选出4人参加4×100米接力赛,甲、乙两人都必须参加,但甲不跑第一棒,乙不跑第四棒.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若△ABF2的面积是△BCF2的面积的2倍,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

同步练习册答案