精英家教网 > 高中数学 > 题目详情

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

x

6

8

10

12

y

2

3

5

6

1)请在图中画出上表数据的散点图;

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.

【答案】1)见图(20.7x2.334.

【解析】

试题(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.

2)作出利用最小二乘法来求线性回归方程的系数的量,求出横标和纵标的平均数,求出系数,再求出的值,注意运算不要出错.

3)由回归直线方程预测,记忆力为9的同学的判断力约为4

试题解析:(1)如图所示.

(2),故线性回归方程为.

3)由回归直线方程,当x=9时,,故预测记忆力为9的同学的判断力约为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,且存在单调递减区间,求实数的取值范围;

(2)设函数的图象与函数的图象交于点 ,过线段的中点作轴的垂线分别交 于点 ,证明: 在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某食品厂生产的面包中抽取个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

频数

(1)在相应位置上作出这些数据的频率分布直方图;

(2)估计这种面包质量指标值的平均数(同一组中的数据用该组区间的中点值作代表);

(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于的面包至少要占全部面包的规定?”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》中有如下两个问题:

[三三]今有宛田,下周三十步,径十六步.问为田几何?

[三四]又有宛田,下周九十九步,径五十一步.问为田几何?

翻译为:[三三]现有扇形田,弧长30步,直径长16.问这块田面积是多少?

[三四]又有一扇形田,弧长99步,直径长51.问这块田面积是多少?

则下列说法正确的是(

A.问题[三三]中扇形的面积为240平方步B.问题[三四]中扇形的面积为平方步

C.问题[三三]中扇形的面积为60平方步D.问题[三四]中扇形的面积为平方步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形与矩形所在平面相互垂直, .

(Ⅰ)求证: 平面

(Ⅱ)求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角 分别是边的中点,沿折起至.

(1)求四棱锥的体积;

(2)求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,MN分别是ABBC的中点.

1)求证:MN∥平面A1B1C1D1

2)求证:平面B1MN⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,直线过点与抛物线交于 两点.点关于轴的对称点为,连接.

(1)求抛物线线的标准方程;

(2)问直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案