精英家教网 > 高中数学 > 题目详情
12.已知cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,则cos(2x-$\frac{2π}{3}$)+sin2($\frac{π}{3}$-x)的值为(  )
A.$-\frac{1}{9}$B.$\frac{1}{9}$C.$\frac{5}{3}$D.$-\frac{5}{3}$

分析 由条件利用同角三角函数的基本关系,诱导公式、二倍角公式,求得要求式子的值.

解答 解:∵cos(x-$\frac{π}{3}$)=cos($\frac{π}{3}$-x)=$\frac{1}{3}$,
∴cos(2x-$\frac{2π}{3}$)+sin2($\frac{π}{3}$-x)=2${cos}^{2}(x-\frac{π}{3})$-1+[1-${cos}^{2}(\frac{π}{3}-x)$]=2•$\frac{1}{9}$-1+1-$\frac{1}{9}$=$\frac{1}{9}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系,诱导公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,则P(2≤ξ<4)等于(  )
A.0.3B.0.35C.0.5D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄频数频率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合计1001.004555
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列
(表二)
50岁以上50岁以下合计
男生54045
女生154055
合计2080100
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},则A∩B=(  )
A.{x|0≤x≤4}B.{0,1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ex+m(m为常数),则f(m)=(  )
A.e-1B.1-eC.$1-\frac{1}{e}$D.$\frac{1}{e}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}{x^2}$+mx+mlnx.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是$\frac{1}{2}$和$\frac{2}{3}$,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.
(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;
(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)为偶函数,且在[0,$\frac{π}{4}$]上是增函数,则φ的一个可能值为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x∈R|-1<x<1},B={x∈R|x•(x-2)<0},那么A∩B=(  )
A.{x∈R|0<x<1}B.{x∈R|0<x<2}C.{x∈R|-1<x<0}D.{x∈R|-1<x<2}

查看答案和解析>>

同步练习册答案