精英家教网 > 高中数学 > 题目详情

设函数,其中为实数,若上是单调减函数,且上有最小值,求的取值范围.

a∈(e,+∞)

解析试题分析:分别利用导数求出单调区间与上的最小值,与给定的上是单调减函数,且上有最小值相结合,得出关于的关系式,可得的取值范围.
解:令,
考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数,
同理,f(x)在(0,a-1)上是单调增函数.
由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)(a-1,+∞),从而a-1≤1,即a≥1,
令g'(x)=ex-a=0,得
时, ;当x>时,
又g(x)在(1,+∞)上有最小值,所以,
即a>e.综上,有a∈(e,+∞).
考点:利用导数求函数的单调区间与最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,
(1)若的单调减区间是,求实数a的值;
(2)若对于定义域内的任意x恒成立,求实数a的取值范围;
(3)设有两个极值点, 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若上的最小值记为.
(1)求
(2)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)讨论在其定义域上的单调性;
(2)当时,求取得最大值和最小值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的极值;
(2)若,证明:在区间内存在唯一的零点;
(3)在(2)的条件下,设在区间内的零点,判断数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;
(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=+ln x(a≠0,a∈R).求函数f(x)的极值和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

同步练习册答案