精英家教网 > 高中数学 > 题目详情

已知函数,若上的最小值记为.
(1)求
(2)证明:当时,恒有.

(1);(2)详见解析.

解析试题分析:(1)因为,对实数分类讨论,①,②,分别用导数法求函数单调区间,从而确定的值,再用分段函数表示;(2)构造函数,对实数分类讨论,①,②,分别用导数法求函数单调区间,从而确定的最大值,即可证明当时恒有成立.
(1)因为
①当时,
,则,故上是减函数;
,则,故上是增函数;
所以,.
②当,则,故上是减函数,
所以
综上所述,.
(2)令
①当时,
,所以上是增函数,所以上的最大值是,且,所以
.
,则,所以上是减函数,
所以上的最大值是
,则
所以上是增函数,所以

②当时,,所以,得
此时上是减函数,因此上的最大值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数,,且函数的图象过点
(1)求函数的表达式;
(2)求函数的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数,设的导数,
(1)求的值;
(2)证明:对任意,等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线处的切线斜率为0
求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数为常数,是自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数内存在两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数为偶函数,且曲线在点处的切线的斜率为.
(1)确定的值;
(2)若,判断的单调性;
(3)若有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为实数,若上是单调减函数,且上有最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数单调区间;
(2)若函数在区间[1,2]上的最小值为,求的值.

查看答案和解析>>

同步练习册答案