(本小题满分13分)
设函数(为常数,是自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在内存在两个极值点,求的取值范围.
(I)的单调递减区间为,单调递增区间为.
(II)函数在内存在两个极值点时,k的取值范围为.
解析试题分析:(I)函数的定义域为,
由可得,
得到的单调递减区间为,单调递增区间为.
(II)分,,,时,
讨论导函数值的正负,根据函数的单调性,明确极值点的有无、多少.
试题解析:(I)函数的定义域为,
由可得,
所以当时,,函数单调递减,
当时,,函数单调递增.
所以的单调递减区间为,单调递增区间为.
(II)由(I)知,时,函数在内单调递减,
故在内不存在极值点;
当时,设函数,
因为,
当时,
当时,,单调递增,
故在内不存在两个极值点;
当时,
得时,,函数单调递减,
时,,函数单调递增,
所以函数的最小值为,
函数在内存在两个极值点;
当且仅当,
解得,
综上所述,函数在内存在两个极值点时,k的取值范围为.
考点:应用导数研究函数的单调性、极值,分类讨论思想,不等式组的解法.
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数,.
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数。
(1)若的单调减区间是,求实数a的值;
(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com