精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
设函数为常数,是自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数内存在两个极值点,求的取值范围.

(I)的单调递减区间为,单调递增区间为.
(II)函数在内存在两个极值点时,k的取值范围为.

解析试题分析:(I)函数的定义域为

可得
得到的单调递减区间为,单调递增区间为.
(II)分时,
讨论导函数值的正负,根据函数的单调性,明确极值点的有无、多少.
试题解析:(I)函数的定义域为



可得
所以当时,,函数单调递减,
时,,函数单调递增.
所以的单调递减区间为,单调递增区间为.
(II)由(I)知,时,函数内单调递减,
内不存在极值点;
时,设函数
因为
时,
时,单调递增,
内不存在两个极值点;
时,
时,,函数单调递减,
时,,函数单调递增,
所以函数的最小值为
函数内存在两个极值点;
当且仅当
解得
综上所述,函数在内存在两个极值点时,k的取值范围为.
考点:应用导数研究函数的单调性、极值,分类讨论思想,不等式组的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图像与函数的图像有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的单调减区间是,求实数a的值;
(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当为自然对数的底数)时,求的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若上的最小值记为.
(1)求
(2)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.已知函数有两个零点,且
(1)求的取值范围;
(2)证明随着的减小而增大;
(3)证明随着的减小而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)若是函数的一个极值点,求的值;
(2)当时,试判断的单调性;
(3)若对任意的,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的极值;
(2)若,证明:在区间内存在唯一的零点;
(3)在(2)的条件下,设在区间内的零点,判断数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用长为18 m的钢条围成一个长方体容器的框架,如果所制的容器的长与宽之比为2∶1,那么高为多少时容器的容积最大?并求出它的最大容积.

查看答案和解析>>

同步练习册答案