已知函数
,其中
是自然对数的底数,
.
(1)若
,求曲线
在点
处的切线方程;
(2)若
,求
的单调区间;
(3)若
,函数
的图像与函数
的图像有3个不同的交点,求实数
的取值范围.
(1)
;(2)当
时,
的单调递减区间为
,
,单调递增区间为
;当
时,
的单调递减区间为
;当
时,
的单调递减区间为
,
,单调递增区间为
;(3)
.
解析试题分析:(1) 利用导数的几何意义求切线的斜率,再求切点坐标,最后根据点斜式直线方程求切线方程;(2)利用导数的正负分析原函数的单调性,注意在解不等式时需要对参数的范围进行讨论;(3)根据单调性求函数的极值,根据其图像交点的个数确定两个函数极值的大小关系,然后解对应的不等式即可.
试题解析:(1)因为![]()
所以![]()
![]()
所以曲线
在点
处的切线斜率为![]()
又因为![]()
所以所求切线方程为
,即
2分
(2)![]()
![]()
①若
,当
或
时,
;当![]()
时,
所以
的单调递减区间为
,![]()
单调递增区间为
4分
②若
,![]()
![]()
所以
的单调递减区间为
5分
③若
,当
或
时,
;当
时,![]()
所以
的单调递减区间为
,![]()
单调递增区间为
7分
(3)由(2)知函数
在
上单调递减,在
单调递增,在
上单调递减
所以
在
处取得极小值
,在
处取得极大值
8分
由
,得![]()
当
或
时,
;当![]()
时,![]()
所以
在
上单调递增,在
单调递减,在
上单调递增
故
在
处取得极大值
,在![]()
科目:高中数学 来源: 题型:解答题
已知函数f(x)=![]()
-ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数g(x)=(x-m)f(x)-![]()
+x2+x在区间(0,+
)上为增函数,求整数m 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
用白铁皮做一个平底、圆锥形盖的圆柱形粮囤,粮囤容积为
(不含锥形盖内空间),盖子的母线与底面圆半径的夹角为
,设粮囤的底面圆半径为R
,需用白铁皮的面积记为
(不计接头等)。
(1)将
表示为R的函数;
(2)求
的最小值及对应的粮囤的总高度。(含圆锥顶盖)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于三次函数
,定义
是
的导函数
的导函数,若方程
有实数解
,则称点
为函数
的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数
都关于点
对称:
②存在三次函数
,若
有实数解
,则点
为函数
的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数
,则: ![]()
其中所有正确结论的序号是( ).
| A.①②④ | B.①②③ | C.①③④ | D.②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com