【题目】如图,已知扇形的圆心角∠AOB=,半径为,若点C是上的一动点(不与点A,B重合).
(1)若弦,求的长;
(2)求四边形OACB面积的最大值.
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:
年份(年) | |||||
维护费(万元) |
已知.
(I)求表格中的值;
(II)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;
(Ⅲ)求关于的线性回归方程;并据此预测第几年开始平均每台设备每年的维护费用超过万元.
参考公式:用最小二乘法求线性回归方程的系数公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是半圆的直径,,为圆周上一点,平面,,,,.
(1)求证:平面平面;
(2)在线段上是否存在点,且使得平面?若存在,求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下几个命题中:
①线性回归直线方程恒过样本中心;
②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;
③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;
④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.
其中真命题的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.
(1)当是棱的中点时,求证: 平面;
(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年5月21日5点28分,在我国西昌卫星发射中心,由中国航天科技集团有限公司抓总研制的嫦娥四号中继星“鹊桥”搭乘长征四号丙运载火箭升空,这标志着我国在月球探测领域取得新的突破.早在1671年,两位法国天文学家就已经成功测量出了地球与月球之间的距离,接下来,让我们重走这两位科学家的测量过程.如图,设O为地球球心,C为月球表面上一点,A,B为地球上位于同一子午线(经线)上的两点,地球半径记为R.
步骤一:经测量,A,B两点的纬度分别为北纬和南纬,即,可求得;
步骤二:经测量计算,,,计算;
步骤三:利用以上测量及计算结果,计算.
请你用解三角形的相关知识,求出步骤二三中的及的值(结果均用,,R表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-2x+1.
(1)试讨论函数f(x)的单调性;
(2)若≤a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;
(3)在(2)的条件下,求证:g(a)≥.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com