精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.

(1)当是棱的中点时,求证: 平面

(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1)取线段的中点,连结.可得四边形是平行四边形, ,即可证明平面;(2)以为原点, 所在直线分别为轴建立空间直角坐标系,利用向量法二面角的余弦值.

试题解析:(1)取线段的中点,连结.

,∴,且.

的中点,∴,且.

,且.∴四边形是平行四边形.

.

平面平面,∴平面.

(2)∵两两垂直,∴以为原点, 所在直线分别为轴, 轴, 轴,建立空间直角坐标系,如图,

∵三棱柱中, 平面

即为直线与平面所成的角.

,则由,得.

.

,

设平面的一个法向量为

,得,即.

又平面的一个法向量为,∴,

又二面角的平面角为钝角,∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若对任意的实数都有成立,求实数的值;

2)若在区间上为单调增函数,求实数的取值范围;

3)当时,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

Ⅰ)若的图像在处的切线经过点(3,4),求的值;

Ⅱ)若,求证:

Ⅲ)当函数存在三个不同的零点时,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆经过点,其离心率为

(1)求椭圆的方程;

(2)已知是椭圆上一点,为椭圆的焦点,且,求点轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司根据销售区域将销售员分成两组.年年初,公司根据销售员的销售业绩分发年终奖,销售员的销售额(单位:十万元)在区间内对应的年终奖分别为2万元,2.5万元,3万元,3.5万元.已知销售员的年销售额都在区间内,将这些数据分成4组:,得到如下两个频率分布直方图:

以上面数据的频率作为概率,分别从组与组的销售员中随机选取1位,记分别表示组与组被选取的销售员获得的年终奖.

(1)求的分布列及数学期望;

(2)试问组与组哪个组销售员获得的年终奖的平均值更高?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别为椭圆的左、右焦点.动直线过点,且与椭圆相交于两点(直线轴不重合).

(1)若点的坐标为,求点坐标;

(2)点,设直线的斜率分别为,求证:

(3)求面积最大时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 其左右焦点为过点的直线交椭圆两点,线段的中点为 的中垂线与轴和轴分别交于两点,且构成等差数列.

(1)求椭圆的方程;

(2)记的面积为 为原点的面积为试问:是否存在直线使得说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,OBD中点,AB=AD=2,.

(1)求证:AO⊥平面BCD

(2)求点D到平面ABC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数对一切实数,都有成立,且.

1)求的解析式;

2)记函数上的最大值为,最小值为,若,当时,求的最大值.

查看答案和解析>>

同步练习册答案