【题目】2018年5月21日5点28分,在我国西昌卫星发射中心,由中国航天科技集团有限公司抓总研制的嫦娥四号中继星“鹊桥”搭乘长征四号丙运载火箭升空,这标志着我国在月球探测领域取得新的突破.早在1671年,两位法国天文学家就已经成功测量出了地球与月球之间的距离,接下来,让我们重走这两位科学家的测量过程.如图,设O为地球球心,C为月球表面上一点,A,B为地球上位于同一子午线(经线)上的两点,地球半径记为R.
步骤一:经测量,A,B两点的纬度分别为北纬和南纬,即,可求得;
步骤二:经测量计算,,,计算;
步骤三:利用以上测量及计算结果,计算.
请你用解三角形的相关知识,求出步骤二三中的及的值(结果均用,,R表示).
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为3、5、9个单位.为了预测以后各月该物质的数量,甲选择了模型,乙选择了模型,其中y为该物质的数量,x为月份数,a,b,c,p,q,r为常数.
(1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由.
(2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线: 与椭圆有且只有一个公共点.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(,且).
(1)当(其中,且t为常数)时,是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;
(2)当时,求满足不等式的实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表:
年龄段 | 20~29 | 30~39 | 40~49 | 50~60 |
频数 | 12 | 18 | 15 | 5 |
经常使用共享单车 | 6 | 12 | 5 | 1 |
(1)由以上统计数据完成下面的列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?
年龄低于40岁 | 年龄不低于40岁 | 总计 | |
经常使用共享单车 | |||
不经常使用共享单车 | |||
总计 |
附:,.
0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com