【题目】设函数(为常数,是自然对数的底数),若曲线在点处切线的斜率为.
(Ⅰ)求实数的值;
(Ⅱ)令,试讨论函数的单调性.
科目:高中数学 来源: 题型:
【题目】如图,是半圆的直径,,为圆周上一点,平面,,,,.
(1)求证:平面平面;
(2)在线段上是否存在点,且使得平面?若存在,求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年5月21日5点28分,在我国西昌卫星发射中心,由中国航天科技集团有限公司抓总研制的嫦娥四号中继星“鹊桥”搭乘长征四号丙运载火箭升空,这标志着我国在月球探测领域取得新的突破.早在1671年,两位法国天文学家就已经成功测量出了地球与月球之间的距离,接下来,让我们重走这两位科学家的测量过程.如图,设O为地球球心,C为月球表面上一点,A,B为地球上位于同一子午线(经线)上的两点,地球半径记为R.
步骤一:经测量,A,B两点的纬度分别为北纬和南纬,即,可求得;
步骤二:经测量计算,,,计算;
步骤三:利用以上测量及计算结果,计算.
请你用解三角形的相关知识,求出步骤二三中的及的值(结果均用,,R表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数在定义域的某个区间上的值域恰为,则称函数为上的等域函数,称为函数的一个等域区间.
(1)若函数,,则函数存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由
(2)已知函数,其中且,,.
(ⅰ)当时,若函数是上的等域函数,求的解析式;
(ⅱ)证明:当,时,函数不存在等域区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题,其中正确的命题序号是________.
①当时,函数取得最大值,则
②已知菱形,为的中点,且,则菱形面积的最大值为12
③已知二次函数,如果时,则实数的取值范围是
④在三棱锥中,,,点分别是的中点,则异面直线所成的角的余弦值是
⑤数列满足,且数列的前2010项的和为403,记数列,是数列的前项和,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为1的正方体中,点P是线段上的动点.当在平面,平面,平面ABCD上的正投影都为三角形时,将它们的面积分别记为,,.
(1)当时,________(用“>”或“=”或“<”填空);
(2)的最大值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-2x+1.
(1)试讨论函数f(x)的单调性;
(2)若≤a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;
(3)在(2)的条件下,求证:g(a)≥.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).
(1)试用分别表示扇形和的面积,并写出的取值范围;
(2)当为何值时,草坪面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中四边形为正方形,分别为的中点.在此几何体中,给出下列结论,其中正确的结论是( )
A.平面平面B.直线平面
C.直线平面D.直线平面
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com