分析 (1)由$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$,解得-sin(2B+$\frac{π}{3}$)=0,可得B.
(2)sinAsinC=sin2B,由正弦定理可得:ac=b2,再利用余弦定理即可得出.
解答 解:(1)∵$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$.
∴$\overrightarrow{m}•\overrightarrow{n}$=2sinBcosB-$\sqrt{3}$cos2B=-sin(2B+$\frac{π}{3}$)=0,
又因为锐角三角形,所以$B=\frac{π}{3}$;
(2)∵sinAsinC=sin2B,由正弦定理可得:ac=b2,
由余弦定理可得:b2=a2+c2-2accosB,
∴ac=a2+c2-2accos$\frac{π}{3}$,化为(a-c)2=0,解得a-c=0.
点评 本题考查了正弦定理\余弦定理的应用、数量积运算性质、辅助角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{3}+{y^2}=1$ | B. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | C. | $\frac{x^2}{12}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{12}+\frac{y^2}{8}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2≤x≤6} | B. | {x|2≤x≤5} | C. | {x|2<x<5} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 11 | D. | 13 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com