精英家教网 > 高中数学 > 题目详情
2.平面直角坐标系中,椭圆C中心在原点,焦点F1、F2在x轴上,离心率为$\frac{{\sqrt{3}}}{3}$.过点F1的直线l与C交于A、B两点,且△ABF2周长为$4\sqrt{3}$,那么C的方程为(  )
A.$\frac{x^2}{3}+{y^2}=1$B.$\frac{x^2}{3}+\frac{y^2}{2}=1$C.$\frac{x^2}{12}+\frac{y^2}{4}=1$D.$\frac{x^2}{12}+\frac{y^2}{8}=1$

分析 由题意画出图形并求得a,结合离心率求得c,再由隐含条件求得b,则椭圆方程可求.

解答 解:如图,设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$.

∵△ABF2周长为$4\sqrt{3}$,∴4a=$4\sqrt{3}$,得a=$\sqrt{3}$.
又$e=\frac{c}{a}=\frac{\sqrt{3}}{3}$,∴c=1.
则b2=a2-c2=2.
∴椭圆C的方程为:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.
故选:B.

点评 本题考查椭圆的简单性质,考查了椭圆定义的应用,体现了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.以x轴正半轴为极轴建立极坐标系,已知圆C的圆心$C(\sqrt{2},\frac{π}{4})$,半径r=$\sqrt{3}$.直线l的极坐标方程为θ=$\frac{π}{4}$(ρ∈R).求圆C和直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-4x-4在闭区间[t,t+1](t∈R)上的最小值记为g(t).
(1)试写出函数g(t)的解析式;
(2)求函数g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=a(x2+$\frac{2}{x}$)-lnx(a>0)有唯一零点x0,且m<x0<n(m,n为相邻整数),其中自然对数e=2.71828…,则m+n的值为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.五点法作函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的图象时,所填的部分数据如下:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$
ωx+φ-$\frac{π}{2}$0$\frac{π}{2}$π$\frac{3π}{2}$
y-1131-1
(1)根据表格提供数据求函数f(x)的解析式;
(2)当$x∈[{\frac{π}{3},π}]$时,方程f(x)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.锐角△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$.
(1)求角B的大小;
(2)若sinAsinC=sin2B,求a-c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列幂函数中①y=x-1;②y=x${\;}^{\frac{1}{2}}$;③y=x;④y=x2;⑤y=x3,其中在定义域内为增函数的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上,若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标的取值范围为(  )
A.$[{0,\frac{12}{5}}]$B.[0,1]C.$[{1,\frac{12}{5}}]$D.$({0,\frac{12}{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线$l:\frac{x}{a}+\frac{y}{b}=1({a>0,b>0})$将圆C:x2+y2-2x-4y+4=0平分,则直线l与两坐标轴围成的三角形的面积的最小值为(  )
A.8B.4C.2D.1

查看答案和解析>>

同步练习册答案