精英家教网 > 高中数学 > 题目详情
12.已知直线$l:\frac{x}{a}+\frac{y}{b}=1({a>0,b>0})$将圆C:x2+y2-2x-4y+4=0平分,则直线l与两坐标轴围成的三角形的面积的最小值为(  )
A.8B.4C.2D.1

分析 先确定$\frac{1}{a}$+$\frac{2}{b}$=1,再利用基本不等式,即可得出结论.

解答 解:圆C:x2+y2-2x-4y+4=0的圆心坐标为(1,2),
则$\frac{1}{a}$+$\frac{2}{b}$=1≥2$\sqrt{\frac{2}{ab}}$,∴ab≥8,
∴直线l与两坐标轴围成的三角形的面积S=$\frac{1}{2}ab$≥4,
∴直线l与两坐标轴围成的三角形的面积的最小值是4,
故选B.

点评 本题考查直线与圆的位置关系,考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.平面直角坐标系中,椭圆C中心在原点,焦点F1、F2在x轴上,离心率为$\frac{{\sqrt{3}}}{3}$.过点F1的直线l与C交于A、B两点,且△ABF2周长为$4\sqrt{3}$,那么C的方程为(  )
A.$\frac{x^2}{3}+{y^2}=1$B.$\frac{x^2}{3}+\frac{y^2}{2}=1$C.$\frac{x^2}{12}+\frac{y^2}{4}=1$D.$\frac{x^2}{12}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,动圆P截直线3x-y=0和3x+y=0所得弦长分别为8,4,则动圆圆心P到直线$x+2y+\sqrt{5}=0$的距离的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$sin({α+β})=\frac{1}{5},sin({α-β})=\frac{3}{5}$,求$\frac{tanα}{tanβ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要想得到函数y=sin2x+1的图象,只需将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{4}$个单位,再向上平移1个单位
B.向右平移$\frac{π}{4}$个单位,再向上平移1个单位
C.向左平移$\frac{π}{2}$个单位,再向下平移1个单位
D.向右平移$\frac{π}{2}$个单位,再向上平移1个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x+y的值为(  )
A.8B.10C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4..从编号001,002,003,…,300的300个产品中采用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号是002,017,则样本中最大的编号应该是(  )
A.285B.286C.287D.288

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂要安排生产Ⅰ、Ⅱ两种产品,这些产品要在A、B、C、D四种不同的设备上加工,按工艺规定,在一天内,产品Ⅰ每件在A、B、C、D设备上需要加工时间分别是2、2、3、0小时,产品Ⅱ每件在A、B、C、D设备上需要加工时间分别是4、1、0、3小时,A、B、C、D设备最长使用时间分别是16、8、9、9小时.设计划每天生产产品Ⅰ的数量为x(件),产品Ⅱ的数量为y(件).(x,y∈N)
(1)用x,y列出满足设备限制使用要求的关系式,并画出相应的平面区域;
(2)已知产品Ⅰ每件利润2(万元),产品Ⅱ每件利润3(万元),在满足设备限制使用要求的情况下,问该工厂在每天内产品Ⅰ,产品Ⅱ各生产多少件会使利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直线y=-$\frac{1}{2}$是函数f(x)的一条切线.
(Ⅰ)求a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

同步练习册答案