精英家教网 > 高中数学 > 题目详情
7.要想得到函数y=sin2x+1的图象,只需将函数y=cos2x的图象(  )
A.向左平移$\frac{π}{4}$个单位,再向上平移1个单位
B.向右平移$\frac{π}{4}$个单位,再向上平移1个单位
C.向左平移$\frac{π}{2}$个单位,再向下平移1个单位
D.向右平移$\frac{π}{2}$个单位,再向上平移1个单位

分析 利用诱导公式化简成同名函数,在平移变换(左加右减,上加下减)即可.

解答 解:由函数y=cos2x可化简为:y=sin($\frac{π}{2}+2x$)=sin[2(x+$\frac{π}{4}$)],
∴向右平移$\frac{π}{4}$个单位可得y=sin2x的图象,
再向上平移1个单位,可得y=sin2x+1的图象.
故选B

点评 本题主要考查函数y=Asin(ωx+∅)的图象变换规律,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.五点法作函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的图象时,所填的部分数据如下:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$
ωx+φ-$\frac{π}{2}$0$\frac{π}{2}$π$\frac{3π}{2}$
y-1131-1
(1)根据表格提供数据求函数f(x)的解析式;
(2)当$x∈[{\frac{π}{3},π}]$时,方程f(x)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-4x+3,g(x)=m(x-1)+2(m>0),若存在x1∈[0,3],使得对任意的x2∈[0,3],都有f(x1)=g(x2),则实数m的取值范围是(  )
A.$({0,\frac{1}{2}}]$B.(0,3]C.$[{\frac{1}{2},3}]$D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆C1:x2+y2+2x+4y+1=0与圆C2:x2+y2-4x+4y-17=0的位置关系是(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若${∫}_{0}^{a}$xdx=2,则常数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线$l:\frac{x}{a}+\frac{y}{b}=1({a>0,b>0})$将圆C:x2+y2-2x-4y+4=0平分,则直线l与两坐标轴围成的三角形的面积的最小值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一个封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,AC=10,AA1=3,则球的体积的最大值为(  )
A.$\frac{32π}{3}$B.C.D.$\frac{9π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{x^2}{2-t}+\frac{y^2}{2+t}=1$所表示的曲线为焦点在x轴上的椭圆;命题q:实数t满足不等式t2-(a+2)t+2a<0.
(1)若命题p为真,求实数t的取值范围;
(2)若“命题p为真”是“命题q为真”的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校一块空地的轮廓线如图所示,曲线段OM是以O为顶点,ON为对称轴且开口向右的抛物线的一段,已知ON=4(单位:百米),MN=4.现计划在该区域内围出一块矩形地块ABNC作为学生活动区域,其余阴影部分进行绿化建设,其中A在曲线段OM上,C在MN上,B在ON上.
(Ⅰ)建立适当的坐标系,求曲线段OM所在的抛物线的方程;
(Ⅱ)为降低绿化成本,试确定A的位置,使绿化建设的面积取到最小值,并求出该最小值.

查看答案和解析>>

同步练习册答案