精英家教网 > 高中数学 > 题目详情
20.已知$sin({α+β})=\frac{1}{5},sin({α-β})=\frac{3}{5}$,求$\frac{tanα}{tanβ}$的值.

分析 利用两角和与差的正弦函数公式化简已知,两式相加减化简,进而利用同角三角函数基本关系式即可计算得解.

解答 解:∵$sin({α+β})=\frac{1}{5},sin({α-β})=\frac{3}{5}$,
∴sinαcosβ+cosαsinβ=$\frac{1}{5}$,sinαcosβ-cosαsinβ=$\frac{3}{5}$,
∴两式相加,可得:sinαcosβ=$\frac{2}{5}$,①两式相减,可得:cosαsinβ=-$\frac{2}{5}$,②
∴①÷②可得:$\frac{tanα}{tanβ}$=-1.

点评 本题主要考查了两角和与差的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=a(x2+$\frac{2}{x}$)-lnx(a>0)有唯一零点x0,且m<x0<n(m,n为相邻整数),其中自然对数e=2.71828…,则m+n的值为(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上,若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标的取值范围为(  )
A.$[{0,\frac{12}{5}}]$B.[0,1]C.$[{1,\frac{12}{5}}]$D.$({0,\frac{12}{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个向量$\overrightarrow a=(2,-1,3),\overrightarrow b=(4,m,n)$,且$\overrightarrow a∥\overrightarrow b$,则m+n的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆C1:x2+y2+2x+4y+1=0与圆C2:x2+y2-4x+4y-17=0的位置关系是(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|ϕ|<\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线$l:\frac{x}{a}+\frac{y}{b}=1({a>0,b>0})$将圆C:x2+y2-2x-4y+4=0平分,则直线l与两坐标轴围成的三角形的面积的最小值为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设F1(-c,0),F2(c,0)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,P是以F1F2为直径的圆和椭圆的一个交点,若∠PF1F2=2∠PF2F1,则椭圆的离心率等于$\sqrt{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,在平行六面体ABCD-A1B1C1D1中,设$\overrightarrow{A{A_1}}=\overrightarrow a$,$\overrightarrow{AB}=\overrightarrow b$,$\overrightarrow{AD}=\overrightarrow c$,M,N,P分别是AA1,BC,C1D1的中点,则$\overrightarrow{MP}+\overrightarrow{N{C_1}}$=(  )
A.$\frac{3}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{3}{2}\overrightarrow c$B.$\overrightarrow a+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$D.$\frac{3}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$

查看答案和解析>>

同步练习册答案