精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上,若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标的取值范围为(  )
A.$[{0,\frac{12}{5}}]$B.[0,1]C.$[{1,\frac{12}{5}}]$D.$({0,\frac{12}{5}})$

分析 设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.

解答 解:设点M(x,y),由MA=2MO,知:$\sqrt{{x}^{2}+(y-3)^{2}}=2\sqrt{{x}^{2}+{y}^{2}}$,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|=$\sqrt{{a}^{2}+(2a-3)^{2}}$,∴1≤$\sqrt{{a}^{2}+(2a-3)^{2}}$≤3,
化简可得 0≤a≤$\frac{12}{5}$,
故选A.

点评 本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x∈N*,2x>x2,则¬p是(  )
A.?x∈N*,2x>x2B.?x∈N*,2x≤x2C.?x∈N*,2x≤x2D.?x∈N*,2x<x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.平面直角坐标系中,椭圆C中心在原点,焦点F1、F2在x轴上,离心率为$\frac{{\sqrt{3}}}{3}$.过点F1的直线l与C交于A、B两点,且△ABF2周长为$4\sqrt{3}$,那么C的方程为(  )
A.$\frac{x^2}{3}+{y^2}=1$B.$\frac{x^2}{3}+\frac{y^2}{2}=1$C.$\frac{x^2}{12}+\frac{y^2}{4}=1$D.$\frac{x^2}{12}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=x3+ax2+b的图象在点P(1,0)处的切线与直线3x+y=0平行.
(1)求a,b;
(2)求函数f(x)在[0,t](t>0)内的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在空间直角坐标系中,设A(0,1,2),B(1,2,3),则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-6x+5≤0},B={x|2x≥4},则A∩B=(  )
A.{x|2≤x≤6}B.{x|2≤x≤5}C.{x|2<x<5}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系中,动圆P截直线3x-y=0和3x+y=0所得弦长分别为8,4,则动圆圆心P到直线$x+2y+\sqrt{5}=0$的距离的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$sin({α+β})=\frac{1}{5},sin({α-β})=\frac{3}{5}$,求$\frac{tanα}{tanβ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂要安排生产Ⅰ、Ⅱ两种产品,这些产品要在A、B、C、D四种不同的设备上加工,按工艺规定,在一天内,产品Ⅰ每件在A、B、C、D设备上需要加工时间分别是2、2、3、0小时,产品Ⅱ每件在A、B、C、D设备上需要加工时间分别是4、1、0、3小时,A、B、C、D设备最长使用时间分别是16、8、9、9小时.设计划每天生产产品Ⅰ的数量为x(件),产品Ⅱ的数量为y(件).(x,y∈N)
(1)用x,y列出满足设备限制使用要求的关系式,并画出相应的平面区域;
(2)已知产品Ⅰ每件利润2(万元),产品Ⅱ每件利润3(万元),在满足设备限制使用要求的情况下,问该工厂在每天内产品Ⅰ,产品Ⅱ各生产多少件会使利润最大,并求出最大值.

查看答案和解析>>

同步练习册答案