精英家教网 > 高中数学 > 题目详情
6.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是(  )
A.$m≤\frac{1}{2}$B.$m<\frac{1}{2}$C.$m≥\frac{1}{2}$D.$m>\frac{1}{2}$

分析 利用二元二次方程表示圆的条件化简求解即可.

解答 解:方程x2+y2-x+y+m=0表示一个圆,可得1+1-4m>0,解得m$<\frac{1}{2}$.
故选:B.

点评 本题考查二元二次方程表示圆的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知Sn为等差数列{an}的前n项和,且a4=7,S4=16.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.点A(5,1)关于x轴的对称点为B(x1,y1),关于原点的对称点为C(x2,y2).
(1)求△ABC中过BA,BC边上的中点所在的直线方程;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,∠BAC=120°,AB=AC=4,D为BC边上的点,且$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,若$\overrightarrow{CE}$=$3\overrightarrow{EB}$,则($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AE}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|,x<1}\\{-(x-2)^{2}+2,x≥1}\end{array}\right.$,则方程f(x+$\frac{1}{x}$-2)=a的实根个数不可能为(  )
A.8个B.7个C.6个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆锥的侧面积为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为1;这个圆锥的体积为$\frac{\sqrt{3}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合设U={x|-3<x<3,x∈Z},A={1,2},B={-2,-1,2},则A∪∁UB=(  )
A.{1}B.{1,2}C.{2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),x∈(-1,1)\\-{x^2}+4x-4,x∈[1,+∞)\end{array}$
(1)在给定直角坐标系内直接画出f(x)的草图(不用列表描点),并由图象写出函数 f(x)的单调减区间;
(2)当m为何值时f(x)+m=0有三个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,D为BC边上的动点,且AD=3,B=$\frac{π}{3}$.
(1)若cos∠ADC=$\frac{1}{3}$,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?

查看答案和解析>>

同步练习册答案